
Developing interactive systems
a perspective on supporting ill-structured work

Developing interactive systems
a perspective on supporting ill-structured work

Proefschrift

ter verkrijging van de graad van doctor
aan de Technische Universiteit Delft,

op gezag van de Rector Magnificus prof. ir. K.F. Wakker,
voorzitter van het College voor Promoties,

in het openbaar te verdedigen op maandag 19 november 2001 om 16.00 uur
door Johannes Jacobus DE GRAAFF

informatica ingenieur
geboren te ’s-Gravenzande

Dit proefschrift is goedgekeurd door de promotor:
Prof. dr. H.G. Sol, Technische Universiteit Delft

Samenstelling promotiecommissie:

Rector Magnificus, voorzitter
Prof. dr. H.G. Sol, Technische Universiteit Delft, promotor
Prof. dr. J. Aasman, Technische Universiteit Delft
Prof. dr. J.H.T.H. Andriessen, Technische Universiteit Delft
Prof. dr. ir. J.L.G. Dietz, Technische Universiteit Delft
dr. ir. C.A.P.G. van der Mast, Technische Universiteit Delft
Prof. dr. W.G. Vree, Technische Universiteit Delft
Prof. dr. R.W. Wagenaar, Technische Universiteit Delft

Published and distributed by: DUP Science

DUP Science is an imprint of
Delft University Press
P.O. Box 98
2600 MG Delft
The Netherlands
Telephone: +31 15 278 5121
Telefax: +31 15 278 1661
Email: DUP@Library.TUDelft.NL

ISBN: 90-407-2248-X

Keywords: interactive systems, design, ill-structured work

Copyright c©2001 by Hans de Graaff (hans@degraaff.org)

All rights reserved. No part of the material protected by this copyright notice
may be reproduced or utilized in any form or by any means, electronic or mechanical,
including photocopying, recording, or by any information storage and retrieval system,
without written permission of the publisher: Delft University Press.

Printed in The Netherlands

Contents

Preface xv

1 Introduction 1
1.1 The interaction dilemma . 2

1.1.1 Examples of the interaction dilemma 3
1.1.2 Evidence for the downside of the dilemma 5

1.2 History of the interaction dilemma 7
1.2.1 User-centered design: a possible solution? 8
1.2.2 Origins of HCI . 8
1.2.3 Evolution of HCI . 9
1.2.4 Consequences of the HCI evolution 11

1.3 Research questions . 13
1.4 Research approach . 15

1.4.1 Research philosophy . 15
1.4.2 Research strategy . 17
1.4.3 Research instrument . 19

1.5 Thesis outline . 19

2 DIANA– a case study 21
2.1 Case study description . 21

2.1.1 TNO Building and Construction Research 22

v

CONTENTS

2.1.2 Finite element analysis . 22
2.1.3 The I-DIANA project . 25
2.1.4 Relation between the case study and the I-DIANA project 26

2.2 I-DIANA Project approach . 27
2.2.1 I-DIANA constraints . 27
2.2.2 Analysis approach . 27
2.2.3 Design approach . 29

2.3 Analysis of current and future use of DIANA 31
2.3.1 The Questionnaire: a first profile of DIANA users 31
2.3.2 The interviews: fleshing out DIANA’s usage 35
2.3.3 Task analysis: a formal analysis of DIANA’s usage 36

2.4 Design of a graphical user interface for DIANA 39
2.4.1 Approach for creating a conceptual design 39
2.4.2 Prototyping for technical feasibility 42
2.4.3 Conceptual design: 1st generation 43
2.4.4 Conceptual design: 2nd generation 44
2.4.5 Conceptual design: 2nd generation, revised 46

2.5 Reflections . 50
2.5.1 Reflections on the analysis process 50
2.5.2 Reflections on the design phase 52
2.5.3 The case study and the research questions 55

3 Human Computer Interaction 57
3.1 Terminology . 58

3.1.1 The development process 58
3.1.2 Interactive systems . 59
3.1.3 Tasks . 61
3.1.4 Ill-structured work . 62

3.2 Support for analysis . 64
3.2.1 Task Analysis methods . 65
3.2.2 Traditional task modeling 65
3.2.3 Adding knowledge to task structures 67
3.2.4 Task modeling for ill-structured work 69
3.2.5 Other developments in interactive systems analysis . . . 70
3.2.6 Discussion . 73

3.3 Support for conceptual design . 73
3.3.1 Examples of design tools in general 74
3.3.2 Examples of design tools for interactive systems 75
3.3.3 Representation of interaction as a design tool 80

vi

CONTENTS

3.3.4 Real world requirements for design support 83
3.3.5 Discussion . 85

3.4 Multi-disciplinary design teams 86
3.4.1 Disciplines and their cultures 86
3.4.2 The constituents of a design team 87
3.4.3 Discussion . 88

3.5 Conclusions and requirements 89
3.5.1 The underlying paradigm 90
3.5.2 Open issues . 90
3.5.3 Requirements and suggestions 91

4 A Workspace-Oriented Design Representation 95
4.1 WONDER’s central concept: the workspace 95

4.1.1 The watchmaker’s workplace 96
4.1.2 Analysis of the watchmaker’s workplace 100
4.1.3 The workspace as the basis of a design representation . . 100

4.2 Way of thinking . 101
4.2.1 Foundations of the workspace concept 101
4.2.2 The elements of WONDER. 103

4.3 Way of modeling . 105
4.3.1 Types of models . 105
4.3.2 Media for models . 106
4.3.3 WONDER elements . 107

4.4 Way of working . 113
4.4.1 Finding workspaces . 115
4.4.2 Assessing workspaces . 115
4.4.3 Refining workspaces . 117

4.5 Way of controlling . 119
4.5.1 The design team . 120

4.6 Way of supporting . 123
4.7 The design process following WONDER 125
4.8 Reflections on WONDER . 126

4.8.1 A look back at the requirements 126
4.8.2 Assumptions on the use of WONDER 128
4.8.3 Observations about WONDER 130

vii

CONTENTS

5 Computer support for workspace design 131
5.1 Introduction . 131

5.1.1 Main areas of computer support for WONDER 132
5.1.2 Requirements . 133

5.2 Computer support for WONDER 134
5.2.1 Selection of tools and platforms 134
5.2.2 Design . 135
5.2.3 Examples of presentation and editing 136
5.2.4 Examples of overviews 138
5.2.5 Search facilities . 144

5.3 Evaluation and recommendations 145
5.3.1 Evaluation of use . 145
5.3.2 Recommendations . 146

6 Use of WONDER in a design process 149
6.1 SHIPSHAPE case description . 149

6.1.1 Shipyard planning in general 149
6.1.2 SHIPSHAPE issues . 150
6.1.3 A good case for applying WONDER 151

6.2 SHIPSHAPE’s design in WONDER 151
6.2.1 Describing a WONDER design 152
6.2.2 SHIPSHAPE workspaces 153
6.2.3 SHIPSHAPE materials . 155
6.2.4 Joint evolution of workspace and material 156
6.2.5 The WONDER representations 159

6.3 WONDER in use . 160
6.3.1 Finding workspaces . 160
6.3.2 Evolution . 163
6.3.3 Assessing workspaces . 164
6.3.4 Refining workspaces . 167
6.3.5 Design team . 168
6.3.6 Comparing use of WONDER to the task structures 170

6.4 Testing the SHIPSHAPE design . 175
6.4.1 Test approach . 175
6.4.2 Test results . 182

6.5 Testing the assumptions . 189
6.5.1 Assumptions about the way of thinking 190
6.5.2 Assumptions about the way of modeling 192
6.5.3 Assumptions about the way of working 194

viii

CONTENTS

6.5.4 Assumptions about the way of controlling 195
6.5.5 Testing the way of supporting 196
6.5.6 Other assumptions . 196
6.5.7 Additional observations 197

7 Conclusions 201
7.1 The thesis in a nutshell . 201

7.1.1 WONDER and its roots . 202
7.1.2 Assumptions . 202
7.1.3 Reflecting the assumptions onto the research questions . 203

7.2 Reflection on the research . 205
7.2.1 Consequences of the research 205
7.2.2 A broader look . 206
7.2.3 WONDER and the underlying paradigm 207

7.3 Future research . 208

A Structure and operation of DIANA 211
A.1 Overview . 211
A.2 Working with DIANA . 213

B PSM notation 219

C WONDER representations for SHIPSHAPE 221
C.1 SHIPSHAPE example workspace 221
C.2 SHIPSHAPE example material . 223

Bibliography 225

Summary 243

Samenvatting 247

Curriculum Vitae 251

ix

CONTENTS

x

List of Figures

1.1 Research activities for an inductive-hypothetic research strategy 18

2.1 Erasmus bridge, Rotterdam . 23
2.2 Example mesh of model with loads and constraints 24
2.3 Task structure: construction of storage racks 37
2.4 Decision structure: validate model 39
2.5 Screenshot: MENTAT II mesh definition 40
2.6 Overview of the I-DEAS user interface 41
2.7 Early prototype screen shot of entering an input file 48

3.1 Star life cycle [HH89] . 59
3.2 ADEPT models and processes [WJK+93] 68
3.3 Seaton and Stewart’s task hierarchy 76
3.4 UIDE database structure [FKKM91] 79
3.5 UAN example—select file [HH93, p. 167] 83

4.1 Example workplace of a watchmaker [Dan81] 97
4.2 Watchmaker workspace—finishing bench 98
4.3 Watchmaker workspace—lathes 99
4.4 Watchmaker workspace—calibrated clock 99
4.5 PSM diagram of workspaces, materials, and actions 112
4.6 Task structure—creating a workspace model 114

xi

LIST OF FIGURES

4.7 Task structure—Assessing workspaces 116
4.8 Refinement step 1: creating workspace descriptions 118
4.9 Refinement step 2: cleaning up a workspace 119

5.1 Makefile (excerpt) . 136
5.2 Text based workspace description (excerpt) 137
5.3 HTML presentation of workspace description 139
5.4 List of all available descriptions (excerpt) 140
5.5 Table of workspace relations (excerpt) 141
5.6 Workspace hierarchy (excerpt) 142
5.7 Workspaces per material (excerpt) 143
5.8 Workspaces per material (excerpt) 144
5.9 Search facility including search results 145
5.10 Example of integrated editing system 147

6.1 SHIPSHAPE design timeline . 153
6.2 High-level hierarchy of workspaces for SHIPSHAPE 154
6.3 Example action ‘create’ . 160
6.4 Part of an early design diagram 162
6.5 Design diagram with annotations 163
6.6 Screenshot from presentation . 176
6.7 Capacity view (screenshot) . 179
6.8 Activity view (screenshot) . 180
6.9 Visual addition to WONDER representation (detail) 193

A.1 DIANA’s user environment . 212
A.2 DIANA program structure . 214
A.3 Syntax specification for load calculation 215
A.4 Example specification for load calculation 216
A.5 Syntax specification for load specification 216
A.6 Example of load specification . 217

B.1 PSM Graphical notation . 220

xii

List of Tables

4.1 Workspace representation definition 109
4.2 Material representation definition 110
4.3 Action representation definition 111
4.4 Structuredness of elements . 113
4.5 Roles in the design team . 121
4.6 Requirements and suggestions implemented in WONDER 128
4.7 Assumptions on the use of WONDER 129

6.1 SHIPSHAPE workspaces . 155
6.2 SHIPSHAPE materials . 156
6.3 SHIPSHAPE materials and workspaces 157
6.4 Revisions of Maintain scope and Scope 158
6.5 Contents of analysis documents 161
6.6 Categorization of changes to design representations 165
6.7 Role assignment in SHIPSHAPE design team 169
6.8 Assessment changes to workspaces 171
6.9 Occurrence of different clusters of changes 172
6.10 Types of workspaces . 173
6.11 Contents of SHIPSHAPE presentation 177
6.12 Support tools and their ratings on a scale of 1–5, with 5 being best 183
6.13 Results for “Does the workspace allow you to reach the stated

goal?” . 184

xiii

LIST OF TABLES

6.14 Results for “How do the workspaces compare to the current
tools?” . 185

6.15 How the currently used tool influences the comparison question 186
6.16 Missing items per workspace . 187
6.17 Quick comments per workspace 188
6.18 Assumptions about WONDER and their results 198

xiv

Preface

It is said that writing a doctoral thesis is a learning experience. Looking back
at the past years I can only concur. I’ve learned much more about design than
I can present within the confines of this thesis. Design is an inspirational topic.
Creating something original is simply a wonderful thing to do, no matter how
small or large it is. Thinking about that act in a more abstract and philosophical
way has certainly captured my attention. I hope that is reflected in this thesis.

Inspiration for my thinking during my research has come from more places
than those mentioned in the bibliography. Books by Henri Petroski, for in-
stance, discussing design from an inspiring engineering perspective [Pet85,
Pet94]. Kevin Mullet’s book on the design of visual interfaces, showing ac-
tual examples of the principals at work [MS95]. Some of the books Rodney
Fuller tends to point out to me, such as a beautifully photographed book on
packing gifts in traditional Japanese manner [Oka75]. It’s a shame I can’t bring
all of this to your attention.

Many people have influenced this work in one way or the other. Most di-
rectly Henk Sol and Charles van der Mast. I want to thank Henk for his contin-
uing support and patience, even when my procrastination must have driven
him mad sometimes; and also for providing high-level but accurate comments
on my drafts, while leaving the details to me. Charles, for introducing me to
the field of HCI, for supporting me throughout my research, and for many in-
valuable revisions of and discussions about this thesis.

Ajanthe Dahanayake proved to be a great person to share a room with at

xv

LIST OF TABLES

the university. Her different perspective on things was always enjoyable and
inspiring, and secretly I always was jealous with the ease with which she seems
to research things. Equally enjoyable were the interactions with the other AIOs.
We had many fun lunches, you were great company throughout the years at
the university.

The people in the MMUIS group provided a great way to learn about re-
search in the other Dutch universities and about the different ways in which a
topic can be approached and researched. I think we shared enough common
interests to be attracted to each other while also being different enough to keep
it interesting. This also made our meetings so enjoyable.

I have to thank the people at KPN Research, my employer for the last few
years, with their patience. It took a bit longer than planned before I could
finish this work. In particular, Heidi Vogel for reading through some of the
early manuscripts, and Angelien Sanderman for nagging me in many ways to
get this finished. I don’t feel sorry for all the fun projects I have done there in
the last few years, even though they kept me from finishing this thesis quickly.
And ladies, now it is time to party.

The fact that this thesis is written in decent American English is due to Mi-
randa Aldham-Breary. She kindly showed me that my English writing wasn’t
as good as I thought it might be, but she also taught me to simply avoid mak-
ing the same mistakes over and over again. Visiting her was always a joy, if
only for her many cats. She also introduced me to my two current roommates
Holly and Niels.

Finally, I want to end this preface by thanking my parents and brother for
their support, for providing a wonderful family environment, and for giving
me the freedom to find out things for myself.

xvi

CHAPTER 1

Introduction

We live in an age of information. Whether this age will be seen as a new kind
of industrial revolution is for future historians to decide, but it can not be de-
nied that computers and their wide range of possible applications are rapidly
changing our lives. Ever more data is being stored in computers, being com-
bined and cross-checked; computers are used to control and monitor more and
more parts of our lives. Computers also keep getting smaller and smaller, and
they have started to turn up in disguise, i.e. in embedded systems such as mi-
crowaves, cars, and mobile phones.

The pervasiveness of and dependence on information systems in our so-
ciety places a huge responsibility on the shoulders of the people who design,
build and market such systems. They have to make sure people can actually
deal with all this information, with all these systems, and that the promises of
computing technology can be delivered. Unfortunately, this does not always
happen. Careful reading of the news, ones own experiences, and stories heard
from friends and colleagues can all add up to the conclusion that computers
often make life harder instead of easier. As an issue of the Communications
of the ACM put it succinctly: “so much research, yet so few good products”
[cac96].

Interactive systems, i.e. systems such as ticket vending machines, spread-

1

CHAPTER 1. INTRODUCTION

sheets, and planning systems, which people use directly to get something done,
pose additional problems over more traditional systems such as transaction
systems, because they try to support more ambitious goals, and therefore of-
fer more and more diverse functionality. With transaction systems the trans-
actions determine how and in what order the functionality is accessed, and
which functions are dealt with by the system, and which by the person oper-
ating it, a process known as function allocation. With interactive systems there
is usually no such intrinsic order. Instead, all the functionality of the system
always needs to be made available to the user. Determining a proper function
allocation, and mapping these functions to specific interface elements in such a
way that the user’s goals still can easily be reached is a major challenge in de-
signing interactive systems. Until now, in many such systems, this challenge
has not been met.

We create and use interactive systems because we believe they enable us to
do things we would not otherwise be able to do, or because they enhance our
productivity. After the considerable success of transaction systems, e.g., salary
administrations, it was believed that similar results could also be achieved for
more complex work which involved decision making and problem solving. Re-
searchers in the field of Artificial Intelligence (AI) have been trying to automate
the decision making and problem solving processes in a manner comparable
to that available for transaction systems. Although progress has been made,
this has only been successful for very specific, often constrained, application
domains. Whether decision making and problem solving can be fully auto-
mated is a long-standing philosophical debate with strong opponents [HD81]
and proponents [Pen90], and as yet no clear outcome.

For now the best we can do is to provide computing support for problem
solving and decision making, but even this has not met with as much success
as support for transaction processing. Several studies claim that efficiency and
effectiveness are not increased as much as they should for systems supporting
decision making and problem solving [Lan95, Nor93]. In this thesis the issue
of efficiency and effectiveness is explored, and a better approach for designing
interactive systems is given. Hopefully use of this approach will allow our
productivity to improve.

1.1 The interaction dilemma

Interactive systems present us with a dilemma. On the one hand we want or
need those interactive systems to get complicated jobs done, but on the other

2

1.1. THE INTERACTION DILEMMA

hand the use of these systems frustrates us, lowers our efficiency, and gets in
the way of the job to be done. In this section examples of both sides of the
dilemma are presented, followed by an explanation of which applications of
information technology are most likely to suffer from this dilemma.

1.1.1 Examples of the interaction dilemma

Examples for the upside of the dilemma, that interactive systems can help us
get complicated jobs done, can easily be found. Creating this thesis, for in-
stance, is much easier with the support of a computer and word processor
then it would be with pen and paper or even a typewriter. Computers allow
me to confer with colleagues in different countries about the thesis through
email or video conferencing. The chip-card with which I pay also ‘knows’ how
much credit I have to make telephone calls, and could provide brief medical
information if needed. Interactive systems also support surgeons examining
heart conditions [dB95], and therapists helping people suffering from acropho-
bia [HKM+95].

The downside of the dilemma is much less recognized. Interactive systems
often get in the way of getting the job done, for instance by preventing the
work being done in a particular order, or by simply not supporting all the
aspects of our work. For example, I have been making changes to the draft
text of this thesis using pen and paper first, as opposed to using my word
processor, because the word processor does not facilitate the kind of notes and
annotations needed to work through a draft. Also, the positive aspects of the
chip-card are offset by the fact that transactions will be much harder to keep
private. Two good sources for an overview of such problems are the RISKS
forum [Neu95, Ris] and several of the books by Norman [Nor88, Nor93, for
example]. The following examples illustrate this downside of the dilemma.

Several years ago I was teaching adults word processing using WordPer-
fect. Most people in the class had never worked with computers before, and
were not used to the way in which a computer deals with files. Much to my
surprise many of them had trouble saving files after making changes to it. The
problem was in the wording of the accompanying question. When a file is
saved again after making changes, WordPerfect will ask the user to replace the
file: Replace (Y/N): FILENAME.WP . This posed a dilemma for the people
on the course: answering ‘yes’ seemed to imply that their current text would be
replaced (but with what?), while ‘no’ seemed like the right answer, but did not
actually save the file, presenting them with the same question later on.

Norman describes problems with a telephone system, and in particular its

3

CHAPTER 1. INTRODUCTION

‘hold’ function. He compares an old telephone, with a hold button and associ-
ated light, with a new telephone which requires a code of ‘#’ and some num-
bers to put a conversation on hold, and a similar sequence of keys to get the
conversation back. As a result many people stopped using the hold function
of the telephone altogether [Nor88].

These two problems, and many similar ones, are caused by some mistake
in the design or realization of the system. The user of such a system is stopped
either because of confusion or because it becomes impossible to continue, or
the user simply avoids using the feature altogether, no matter the convenience
it could provide. In the worst case the users will blame themselves for not
understanding, and feel bad about this [Nor88]. Such problems are usually
caused by some oversight of the designer, or by unexpected use of the system.
Often they are easier to fix in hindsight than to avoid them in the first place.
Fixing them is often as easy as changing the wording of a message or adding
an additional button to the telephone.

These problems have not gone away in recent years, although their nature
is changing. The accessibility issues as evidenced by the previous examples
are often not an issue now, but the fix that has been applied often consists of
keeping the user within a narrow, well-defined and ‘friendly’ process. Users
are fine as long as they don’t venture off of the beaten track. For instance, my
new video automatically adjusts the time to the teletext time broadcast on the
first channel. While this avoids a number of problems in setting up the time
correctly, it does pose a problem for me, because I have a channel in a different
timezone from my own on the first channel, and there is no way to disable the
automatic update.

On a similar note the strong coupling between Microsoft’s Exchange and
Schedule+ applications brings many benefits, but it also has the unfortunate
side-effect of locking the user out of the schedule when a mail message is being
composed from within another application. In summary, often the fix is not to
create a usable complex system, but rather to oversimplify it, and then lock the
user into that solution.

This touches on one of the hallmarks of truly interactive systems: the fact
that they should provide the user with a large amount of freedom to carry out
work. Unlike transaction systems, there is no fixed, pre-defined path. This
freedom of choice of action provides much of the power of interactive systems,
along with other attributes such as responsiveness and visualization. The flex-
ibility allows interactive systems to support ill-structured work, i.e. work for
which no program has been described [Bot89]. In other words, user interfaces
often are non-deterministic [Dix90].

4

1.1. THE INTERACTION DILEMMA

This ability to support ill-structured work comes at a price: usability prob-
lems are less easily noticed. The lack of a program for, or description of, the
ill-structured parts of the work makes it impossible to check the paths through
the software, as can be done for transaction systems. The obvious errors will
still surface, but problems with the functionality of the system will often go
unnoticed. Examples of such problems are that functionality is located in odd
or unexpected places (“I never would have thought I could also do feathering.
Why isn’t it in the column menu where I would expect it!”), related function-
ality is not located closely together, that it is not clear which of all the possible
options apply in a given context, or that the user is locked into a single path
through the application.

Such usability problems often go by unnoticed. People can and will adjust
to these situations, avoiding trouble areas, inventing kludges to get the job
done, or simply not use the functionality at all. They often do not even consider
the problems to be problems, instead thinking they do not really understand
how it works or that their job is too complicated or different for the system they
are using.

Even though the users do not generally notice these usability problems, this
does not mean that these problems cannot have a large impact on their work.
Trying to assert this turns out to be difficult, because asking the users will not
work as they are not directly aware of the problems.

1.1.2 Evidence for the downside of the dilemma

Circumstantial evidence provided in this section suggests that the problems
with interactive systems as sketched in the previous section do exist. The evi-
dence is given in two parts. First, a macro-economic approach is used to look at
the impact of information technology on productivity, and second, the results
of usability studies of individual systems are discussed.

Productivity The positive side of the interaction dilemma suggests that we
should see an increase in productivity as a result of the use of interactive sys-
tems, while the negative side suggests a decrease.

An investigation by Landauer suggests that the increase of productivity has
dropped as a result of the introduction of information technology in the work-
place, in particular when interactive systems have been introduced [Lan95].
His study shows a noticeable drop in the rate of productivity growth after
1973, and calculates that, on average, IT investments yield 13.3% less than

5

CHAPTER 1. INTRODUCTION

other investments. Landauer postulates that this loss is encountered because
interactive systems often are not really relevant to productivity (e.g., generat-
ing nice-looking reports, or surfing the web), and because they often do not
support those tasks which really influence productivity. This latter argument
is supported by Taylor, who claims office automation often fails because of “an
erroneous conception of what an office is, what people do in it, and what the
practice of management amounts to in the present age” [Tay93]. He argues
that office automation in its current state is flawed, mostly because it simply
does not address the necessities of the office, the organization, and the office
worker, a point that is also stressed by Hammer [Ham90]. In a study of com-
puter aided design (CAD) tools, Liker has found that support for creative engi-
neering is even more important to get right than the more functional, analytical
engineering tasks [LFNZ92].

Others take issue with the conclusions of Landauer’s study, better known
as the ‘productivity paradox’. Brynjolfsson, for instance, argues that more ac-
curate measuring and better calculations do not show this drop [Bry93]. He
also argues that, instead of just looking at a single number for productivity,
additional metrics need to be taken into account, such as user satisfaction, e.g.
when a reports looks better. In other words, the drop in productivity might
be made up for in other metrics such as consumer value, they might just fall
outside the productivity scope [HB95].

Whether there really is a productivity paradox is debatable and depends on
the calculations used and the assumptions made. At the very least we can say
that the rate of productivity growth has not increased, as the positive side of
the interaction dilemma argues.

Usability For the second part of the evidence we look at individual systems.
Nielsen cites several studies into the effects of usability engineering [Nie93].
In each of these cases the cost savings resulting from fixing usability problems
found in the products were significant, in particular when compared to the
cost of carrying out the usability work. The evidence here is that each of the
systems under study had usability problems, similar to the ones outlined in
the previous section, leading to a loss of productivity.

The users of the systems described in these studies were lucky. The prob-
lems with their systems were fixed, although sometimes after being introduced
in the workplace. How many systems have not had such usability checks?
Many of the problems found during such usability checks can be fixed fairly
easily, for instance by changing the wording of a message. Some of the prob-

6

1.2. HISTORY OF THE INTERACTION DILEMMA

lems, however, can be much larger than that, and tied to the whole architecture
or metaphor of the system. In these cases only a major redesign can really solve
the problems. For these problems prevention is much better than trying to fix
them afterwards.

In summary The interaction dilemma, then, is that we may try to create in-
teractive systems to get more and more complicated jobs done, but often these
systems will not help us as much as we would like, sometimes to the point of
being detrimental. This seems to be true in particular for interactive systems
which support a much more flexible approach to work than transaction sys-
tems, as their projected benefits are usually larger and more visible than their
real drawbacks and problems.

1.2 History of the interaction dilemma

The examples and circumstantial evidence of the downside of the interaction
dilemma suggest that many interactive systems do not provide proper support
for the job they are meant to support. Both the arguments for the productiv-
ity paradox and the usability problems found suggest that the design process
of interactive systems should be more sensitive to the work that needs to be
supported, and to the people who need to operate these systems.

The design process can be influenced by a better understanding of orga-
nizations, and the way in which these organizations can be supported by in-
formation technology in general. This influence is provided by the field of
Information Systems (IS). While IS can improve the way in which interactive
systems are incorporated in an organization, it does not address explicitly the
people working with these systems. This aspect is covered by the fields of
Computer Supported Cooperative Work (CSCW), which addresses the support
of people working together in both a social and a technical sense, and Human-
Computer Interaction (HCI), which is concerned with the interaction of a per-
son with a computer system.

To make the research in this thesis more manageable I have decided to con-
centrate on supporting a single person using a single interactive system while
assuming the cooperation of this person with other people does not need ac-
tive support, and that the organization and the work of the person remain the
same. In other words, I look at this problem from the perspective of HCI.

7

CHAPTER 1. INTRODUCTION

1.2.1 User-centered design: a possible solution?

The problems surrounding the use of interactive systems have been noted for
quite a while in the field of HCI. In 1986 Norman and Draper edited a book
about the importance of user-centered design [ND86]. In their Human Ma-
chine Interaction project at the University of California in San Diego they came
to see the importance of a user-centered approach. The book is, as the au-
thors acknowledge, a book of questions. All authors recognize the importance
of user-centered design, and they can explain why such a perspective is im-
portant, but specific instructions on how to achieve user-centered design are
lacking.

Their efforts have been repeated during the last ten years. Each time many
examples of problems with interactive systems are cited, and user-centered
design, or something similar, is identified as the solution [Gou88, Lan95, e.g.].
In that sense, Landauer’s book is just a continuation of the issues raised ten
years earlier by Norman et al..

This observation begs the question: if the problems, and the general solu-
tion have been known for some time, then why have we not seen any obvious
progress during the last ten years? This question can be answered by a brief
overview of the origins and evolution of the field of HCI. This overview is
partly based on articles on the history of HCI and usability as described by
Butler [But96] and Myers [Mye96].

1.2.2 Origins of HCI

The origins of HCI can be found in three fields: human factors, psychology, and
computer science [MG95]. The field of human factors started early this cen-
tury, studying the interactions between people and machines. During World
War II more and more complicated machinery was being built, which boosted
the human factors field. In recent years human factors has evolved to also in-
clude computers and interactive systems, because many of the principles and
guidelines from interaction with mechanical machines can also be applied to
interaction with computers.

Psychology, cognitive psychology in particular, takes another view on HCI,
trying to explain and predict how people perform with interactive systems.
An early example of this is ‘Fitts Law’, describing the relation between speed
and accuracy in human movement, making it a prime candidate for mouse-
based graphical systems [Fit54]. Additional research continued to look at more
detailed aspects of interactive systems and the psychological aspects of using

8

1.2. HISTORY OF THE INTERACTION DILEMMA

them. A seminal work in this area is the Goals, Operators, Methods, and Se-
lection rules (GOMS) model, which claims to predict human performance for
different variants of an interactive system [CMN83]. More work is needed in
this area to not just understand what is going on in human-machine interac-
tion, but also to actively guide the design process [Kir95].

Computer science has been a dominant field in HCI through the develop-
ment of new software techniques and new possibilities for interaction. The
development of graphical interfaces opened up a whole new realm of pos-
sibilities. Technological improvements have continued since then, currently
resulting in the ubiquitous direct manipulation interfaces with mouse and bit-
mapped display. Computer scientists have been pushing technology at a high
pace, making it hard for the two other original fields to keep up with new pos-
sibilities and applications.

The three fields, together with some other fields such as graphical design
and social sciences, have been merging slowly. A single unified HCI field has
only recently begun to emerge [Sea96].

1.2.3 Evolution of HCI

Theory on design recognizes three main stages in development: analysis, de-
sign, and realization [Jon92]. The evolution of HCI has followed these three
stages in an interesting way, starting with realization, then moving to analy-
sis, and only recently shifting to design. The shift from realization to analysis
to design can also be observed in the development of User Interface Manage-
ment Systems (UIMSs) [HH89]. Hartson and Hix describe several generations
of UIMSs, and even though their classification is not based on time, the ad-
vancements in UIMSs show a similar evolution towards supporting the design,
starting with support for realization.

Realization The initial focus of the emerging field of HCI was on realizing in-
teractive systems. This focus was primarily driven through technology push,
instigated in the computer science field, because its workers possessed and cre-
ated the technology to actually build such systems. This resulted in a strong
engineering focus on interactive systems, with much attention for new possi-
bilities and techniques associated with the new technology. Typical conference
paper topics from that time include direct manipulation, use of windows, and
graphical interfaces in general, the mouse, and the application of these con-
cepts to several application domains such as word processing and drawing

9

CHAPTER 1. INTRODUCTION

[BC85, Jan83, e.g.].
Once the basic components of a graphical system were understood, fo-

cus shifted to supporting the realization of such interfaces. It was clear that
building graphical interactive systems was no small task, and supporting tools
and methodologies were needed. Examples of such realization oriented re-
search are: the creation of toolkits [LVC89, Ope91, Sun89]; dialogue descrip-
tions [Gre86]; interface builders [ea83, DH86]; and User Interface Management
Systems (UIMSs) [FKKM91, vdMV92, MGD+90, Ols92].

All this research was focused on aspects of the realization of the interactive
system [Thi90]. Even the UIMSs have a strong focus on the technical aspects
of the system, even though they generally try to support some analysis and
design activities. For instance, the User Interface Development Environment
(UIDE) [FKKM91] contains an elaborate data model for modeling the techni-
cal part of the interface, and it contains a large number of modules to use this
data to create different user interface elements such as context-sensitive help
[dG92]. However, none of these modules make it easy to actually design an in-
terface, nor do any of the modules contain any inherent knowledge about user-
centered design. Even worse, the built in constraints can easily work against
user centered design, even with a competent designer trying to create such a
design.

Analysis After the technical difficulties of the current user interface para-
digm were solved, or at least under control, attention in the HCI community
started to slowly shift away from realization. People realized that building
systems was not enough, but that they would also need to know what to build.
This led to attention for analysis of the system to be designed and built. Peo-
ple started to describe techniques and methods to do this analysis in such a
way that it would lead to usable interactive systems. The Human Factors field
contributed the use of task analysis [Dia89, Joh92, KA92]. Task analysis had
already been used for a long time by human factors people to describe tasks
in operator oriented environments (such as power plants or satellite guidance
and tracking) [Mit87, for example]. Unfortunately, task analysis is less helpful
in analyzing ill-structured work.

Recently, the focus on analysis has been taken one step further. In addition
to analyzing the tasks, all of the work context is taken into account. Examples
of such techniques go by different names: contextual inquiry [WHK90], contex-
tual design [GK91], activity theory [Kap92], and situated action [Suc87]. The
main theme with all these approaches is that work is not just about some ab-

10

1.2. HISTORY OF THE INTERACTION DILEMMA

stract tasks, but rather about the whole of the work environment. This implies
that the designer needs to take much more into account than just the tasks. The
way in which the work is organized, the relative importance of each task and
its relationship with other tasks, and the influences of other artifacts all need
to be taken into account when designing an interactive system, according to
those theories.

Design A thorough analysis of the work situation is useful, but it can not
negate the fact that we still need to design a new interactive system. Design
is an important part of the development process, because it is used to try to
organize the chaos found during analysis into a meaningful order which can
be implemented. Once a proper design is available it can be realized with tools
and interface builders. Analysis is much needed during development, but can-
not be used alone to guide the creation of an interactive system. Analysis only
yields a flood of information, which in turn is canalized by design. Despite
its central role in the development process, design has not been very well de-
veloped in HCI. The primary cause for this lack of attention appears to be a
lack of involvement of design disciplines, such as industrial design, early in
the evolution of HCI.

The need for design has been stressed enough, for instance in the pleas
for user centered design encountered earlier, in analogy with longer standing
fields such as architecture, and in discussions about the analogies with arts
such as theater [Lau93]. Only recently more specific and widely applicable
approaches to design have been published. A good example is ‘Bringing de-
sign to software’, which brings forward issues identical to the ones in this the-
sis [Win96]. Conference proceedings also show a marked rise in the number
of articles on design through the years, and those conferences are integrating
real-world examples of design and the underlying design process, the ‘design
briefings’, in their conference programs [ADO94, KMM95]. Older examples of
specific design techniques are Design Space Analysis (DSA) [MYBM91], and,
to a lesser extent, critiquing systems [FLMM90].

1.2.4 Consequences of the HCI evolution

The evolution of HCI has had its consequences, three of which are described in
this section.

11

CHAPTER 1. INTRODUCTION

Interface vs. interaction One consequence is the confusion between ‘inter-
face’ and ‘interaction’. Many people still believe that HCI concerns itself ex-
clusively with the interface of an application, i.e., the windows, buttons, and
graphics used to present the application. This view is a consequence of the
early focus on realization, because this often means implementing the inter-
face components of an interactive system, and because much of the research
during the early HCI period focused exclusively on interface techniques and
tools to help build interfaces.

Instead HCI is concerned with the whole of the application, not just the
outside of it, simply because the whole of the application influences the use
and usability, not just the interface at the outside of the application. All of
the interaction needs to be designed properly; the windows on the screen are
simply the last step in this process [VSG91, Har96].

This implies that the principles of HCI, such as user centered design, should
be applied throughout the whole design cycle, from the earliest start of the
design process. In this thesis I consider HCI to include all the aspects related to
the design of interactive systems, and not just the interface of such a system.

Disciplines in HCI Given the wide range of aspects related to HCI, many
different disciplines are needed to create good interactive systems, but a con-
sequence of the HCI evolution is that the presence of different disciplines is
skewed. There certainly are plenty of computer science people involved, but
other disciplines such as graphical design and drama are not represented very
well. Yet such disciplines could make meaningful contributions to the field of
HCI [Lau93, for example]. A suitable analogy is film technology, which did not
become a success until its use moved from the engineers to art-oriented people
[Hec91].

Design is another minority discipline. Within HCI there has not been much
emphasis on design, unlike in industrial design or architecture, until lately.
One consequence of this is that only a few design methods are available. Many
publications have presented some kind of design approach, but almost always
these approaches are tied intimately to the particular problem they try to solve.
This conclusion also answers the question why not much progress has been
made in user centered design in the past years.

It is not just a matter of adding a bit more or less of one discipline or another.
All of these disciplines need to work together to create a good HCI experience.
With each of the disciplines having different values and interest, this is not
something that comes easy or automatically. Explicitly dealing with multi-

12

1.3. RESEARCH QUESTIONS

disciplinary teams is crucial for good HCI.

Integration of the development phases The three main phases of the devel-
opment of interactive systems, analysis, design, and realization, are described
separately in the paragraphs above, not just because each of them was given
more attention in turn as time progressed, but also because they are usually
separated during development. Even though there is a logical, yet iterative,
flow from analysis to design to realization, the developments in the three areas
hardly ever allow an easy crossing from one to the other. As Fischer puts it:

“The conceptual structures underlying complex software systems
are too complicated to be specified accurately in advance and too
complex to be built flawlessly [. . .]. Specification and implemen-
tation have to coevolve [. . .] requiring a tighter integration of the
frequently separated stages of software development: analysis, de-
sign, specification, and implementation. Thus, evolution occurs as
feedback from partial solutions improves the developers’ under-
standing of the problem.” [FRW+95]

As Fischer indicates, the connections between the three stages of design
have not received much attention. Most research is concerned with a single
aspect of the development of interactive systems, and does not try to bridge
the gaps to other stages. This has resulted in a large number of independent
solutions to particular aspects instead of more broadly oriented approaches.

1.3 Research questions

The following objective for this research was formulated based on the observa-
tions outlined in the previous two sections:

to explore how explicit attention to work context early in the design
process can be used to improve the usability of interactive systems
facilitating ill-structured work.

This objective is based on the following observations:

• the productivity paradox seems to apply in particular to systems facili-
tating ill-structured work;

13

CHAPTER 1. INTRODUCTION

• problems with interactive systems facilitating ill-structured work are par-
ticularly hard to diagnose and fix;

• design is the least supported part of the development process;

• most currently available support for design is aimed at the later stages
of design, i.e., interface design, instead of the initial stages of design, i.e.,
design of the structure and interaction of the system.

To meet the research objective, ill-structured work and its context needs
to get a central place in design. Only then can usable interactive systems be
designed, because it is the design activity which determines structure and in-
teraction, and it is this structure and interaction which in turn determines the
usability of the interactive system in relation to the work. The question is how
this can be accomplished. What kind of design activities are needed to meet
the research objective?

Research question 1 How can we formulate the design activity for interactive sys-
tems which facilitate ill-structured work?

The conclusions from the evolution of HCI presented above already indicate
that these design activities should not initially include design of the actual user
interface. Structure and interaction of the system are, at least initially, more
important. To emphasize this the second research question is formulated to
find a suitable description which does not include user interface components:

Research question 2 How can ill-structured work be described explicitly during de-
sign without reverting to interface components?

Finally, it is important to ensure that the results from the first two research
questions provide a usable and workable solution fitting the research objective.
Usable, in that the design activities and design representation can be used by
a design team; workable, in that the activities and representation fit well into
the development process; and fitting, in that the activities and representation
yield the desired results:

Research question 3 How can it be ensured that the formulated design activities and
representation of ill-structured work provide a usable, workable, and fitting solution
towards the design of interactive systems facilitating ill-structured work?

14

1.4. RESEARCH APPROACH

Underlying the research objective and the research questions is a paradigm
that is not explicitly tested in this thesis. The research objective and the re-
search questions have been created with this paradigm in mind, though, and
this paradigm also strongly influences the remainder of the thesis, in particular
the case analysis and theory formulation. In Section 7.2.3 the paradigm will be
revisited in light of the research presented in this thesis. The paradigm is:

An interactive system should be designed as a whole; the leading perspec-
tive during design should be that of its users.

This paradigm states that it is the future user of a system who needs to
be satisfied to the full, and that the design therefore has to start there. Issues
related to the realization of the system can be valid constraints but should not
determine the direction of the design. Too much is designed from a technology
perspective as it is [Tha01]. In addition, it makes clear that this design should
be seen as one piece of work. It can not be taken apart initially. This is in
contrast with the idea that the user interface can be designed as some sort of
add-on separately from the remainder of the system as mentioned on page 11.

1.4 Research approach

A research philosophy, an accompanying research strategy, and research in-
struments to carry out the research are described in this section.

1.4.1 Research philosophy

For this research two major research philosophies are distinguished, in anal-
ogy with research into organizations [vM94, dV95, for example] and in social
research [Hug90].

Positivism Positivists believe in the objective nature of research. They assume
all things can be approached objectively, and hence try to describe the
phenomena being researched in an objective manner. To accomplish this,
positivists require experiments to be repeatable, and stress isolation of
the independent phenomena within the research object. This attitude is
reflected in their choice of research instruments such as experiments, sur-
veys, and field experiments.

15

CHAPTER 1. INTRODUCTION

Interpretivism Interpretivists believe in the subjective interpretation of the re-
searcher. Based on the idea that the researcher always has some influence
on the research object, they mostly rule out objective research. Instead
they propose conducting the research in a natural environment, and in-
terpret the results. Again, this attitude towards research is reflected in the
research instruments, such as action research, field studies, and reviews.

Most of the people who write about research approaches in HCI do so from a
strong positivist perspective. Kirakowski and Corbett, for instance, have writ-
ten a book about research methodology in HCI [KC90]. In their book they focus
solely on doing experiments and user studies, on making aspects of the user in-
terface or the interaction measurable, and on doing this in a statistically sound
way. In similar methodology oriented articles a strong psychology background
seeps through [Lan88, McG95, for example].

In contrast, not much has been written about an interpretivist approach to
doing HCI research. No articles or books available at the start of this research
on research methodology for HCI mentioned an interpretivist approach to HCI
research. A likely explanation is the strong influence of the positivist research
tradition of psychology, human factors, and to a lesser extent computer science.

During the course of this research support for an interpretative approach
has been voiced within the HCI community. Carroll and Kellogg argue that
much of the theory behind HCI can be found by studying and observing the
artifacts which are designed and used [CK89]. Additional arguments can be
found in the social sciences where a similar choice between positivist and in-
terpretative approaches is leading increasingly to interpretative approaches
[Hug90].

An interpretative approach seems to be particularly suited for research sur-
rounding the design stage of the development of interactive systems. Quanti-
fying phenomena during the design stage is almost impossible, because most
of these phenomena can not be quantified, e.g. ease of use of a design, or esthet-
ics. Creating experiments which are repeatable can be done [NF, for example],
but it is very hard to define and measure individual variables, and it remains
to be seen what can be generalized from these experiments. Even repeatabil-
ity is often a problem, since human designers are directly involved with the
experiments. Finally, with the small amount of theory available in this area of
HCI, not much can be tested right now, and instead it seems theory has to be
developed based on practice in the field. These arguments lead me to choose
an interpretivist approach to the research presented in this thesis.

16

1.4. RESEARCH APPROACH

1.4.2 Research strategy

Several research strategies are available to carry out interpretivist research. The
selection of a proper strategy is guided by the nature of the problem, and by
the status of theory development in the research field. The status of theory de-
velopment in the field of HCI, in particular in the design of interactive systems,
is still very much in a very early stage of theory development (See Section 1.2).

The research presented in this thesis represents an ill-structured problem
[Sol82]. This essentially means that the problem of improving the design of
interactive systems supporting creative work can not be solved in a purely
deductive manner. In addition, to my knowledge no readily available theory
can be used as a guide to solve this problem. This implies that the research
problem can only be solved by inductively studying the design process, and
developing a supporting theory based on these observations.

Both De Vreede and Van Meel show that the most appropriate research
strategy for this type of approach is an adjusted version of the inductive hy-
pothetic research strategy [vM94, dV95]. According to Sol, this approach has
the following advantages [Sol82]:

• it stresses the inductive specification, testing and expanding of theory;

• it offers possibilities for an interdisciplinary approach;

• it enables the generation of various alternatives for the solution of the
problem;

• it emphasizes learning by considering analysis and synthesis as interde-
pendent activities.

These advantages are directly applicable to the research problem presented
in this thesis. The only way to formulate some theory, given the lack of avail-
able theory in the research field, is to observe what currently happens in prac-
tice, reflect on this using available literature, and use this combined knowledge
to form a theory. This can be facilitated by an inductive approach. Developing
interactive systems is inherently an interdisciplinary approach. A useful theory
can not be created in one step because of the complex nature of the develop-
ment of interactive systems. Rather, several alternatives need to be explored,
and a proper way to improve design needs to be found through iteration. Fi-
nally, we can learn iteratively from applying the theory and using the feedback
to improve the theory.

17

CHAPTER 1. INTRODUCTION

Descriptive

model
empirical

Prescriptive

model
empirical

Prescriptive
conceptual

model

Descriptive
conceptual

model 3. Theory
formulation

1. Initiation 5. Evaluation

2. Abstraction 4. Implementation

Figure 1.1: Research activities for an inductive-hypothetic research strategy

The inductive hypothetic research strategy consists of five activities and
four models, as shown in Figure 1.1 and described below [dV95, Sol82].

1. A number of initial theories are identified, regardless their completion or
verification. These theories are used to investigate empirical situations,
leading to one or more empirical models.

2. Empirical situations are abstracted into a descriptive empirical model.
The emphasis during abstraction is on all essential aspects, but more im-
portantly the perceived problems.

3. A prescriptive conceptual model is derived from the descriptive concep-
tual model. This prescriptive model takes the form of a theory, and it
should be capable of solving the problems observed during the first step.

4. The prescriptive conceptual model is then implemented in one or more
prescriptive empirical models, to test and validate the prescriptive con-
ceptual model.

5. The results of the prescriptive empirical situation are evaluated. Addi-
tional improvements or changes to the prescriptive conceptual model
may be identified.

18

1.5. THESIS OUTLINE

1.4.3 Research instrument

Research instruments are needed to carry out the steps of the research strategy.
Action research is the instrument that fits this research best.

Action research Action research is similar in some respects to case study re-
search. Case study research aims to provide the actual examination of a con-
temporary phenomenon in its real life context [Yin89, Che81]; its focus is on the
observation. Action research aims to have a dual outcome [APS90, ALMN99].
Using action research results in action, changes made to a system, and research,
an understanding of the changes made. This dual character affords the simul-
taneous application of a framework, and an understanding of the way in which
the framework supports the design process [Dic93].

This is very similar to what Collins described as ‘participant comprehen-
sion’ [Col84]. With this term Collins means that the researcher should actively
engage in the topic under research, so that all of the forces and actions can be
experienced first-hand. This can lead to a much better understanding of the
topic from the inside out, while with observation only the effects of this can be
seen, but not the motivations underlying them.

Why action research is suited for this thesis The research questions posed in
Section 1.3 all deal with the act of designing. This is an inherently hard activity
to observe, because so much goes on inside the designers head. Verbalizing all
the different trade-offs, constraints, and alternative possibilities is hard to do.
Experiencing them first-hand and then reflecting on them will provide much
better results.

1.5 Thesis outline

This section contains an introduction of the remainder of this thesis, and ex-
plains how the research activities introduced in Figure 1.1 and Section 1.4 can
be found in this thesis.

First, Chapter 2 describes the design process of an interactive system to
accommodate complex numerical analysis of civil engineering constructions:
DIANA. This experience is summarized in Section 2.5, and this summary can
be seen as the descriptive empirical model as it describes the design experience
gained.

19

CHAPTER 1. INTRODUCTION

Next, in Chapter 3, this one experience is abstracted. This is done by ex-
amining relevant literature, and reflecting this back onto the conclusions from
the DIANA-case. In addition, some of the issues introduced in Section 1.2 are
explored further. As a result, Section 3.5 draws conclusions and lists require-
ments for a design tool. This section can be seen as the descriptive conceptual
model, because it brings together real-world experience and existing theory to
formulate what problems remain which must be addressed to answer the re-
search questions.

Chapter 4 contains a formulation of the theory called WONDER which tries
to address the conclusions and requirements presented in the previous chapter.
Thus it can be seen as the prescriptive conceptual model; it prescribes how the
design process should be carried out, and what design tools need to be used.
To facilitate evaluation a number of assumptions are presented in Section 4.8.2.
Chapter 5 describes a research instrument created to allow WONDER to be used
in a real-world situation.

Chapter 6 describes the use of WONDER in the design of a shipyard planning
system called SHIPSHAPE. The use of WONDER on an actual problem can be
seen as the prescriptive empirical model, in that the prescriptive conceptual model
is now tried in an empirical situation. This can then be evaluated, leading
in turn to another descriptive empirical model which can be used as input for
another research cycle. The evaluation is described in Section 6.5. Starting
points for other research cycles are described in Chapter 7, in addition to a
complete overview of the research presented in this thesis.

20

CHAPTER 2

DIANA– a case study

In this case study the design of an interactive system in a real world situation is
investigated. The goals of this case study were to apply current techniques and
methods for analysis and design of interactive systems, to observe what kind
of problems surface while doing this, and to analyze the causes and generality
of these problems. As such, this case study provided an approach to under-
standing the practical side of designing interactive systems. The chapter has
a strong focus on the process carried out, and much less on the product being
designed. Further background information on DIANA and its architecture can
be found in Appendix A.

2.1 Case study description

The case study was carried out at TNO Building and Construction Research as
part of the I-DIANA project. The goal of this project is to design a graphical user
interface for DIANA, a large software system for finite element analysis. At the
start of the project DIANA existed as a batch-oriented system.

21

CHAPTER 2. DIANA– A CASE STUDY

2.1.1 TNO Building and Construction Research

TNO1, i.e. the Netherlands Organization for Applied Scientific Research, is a
large Dutch research and technology organization. It is a commercial organi-
zation which tries to apply technological knowledge with the aim of strength-
ening the innovative power of industry and government. Approximately 25%
of turnover is currently generated internationally. [TNO94, TNO00].

TNO consists of fourteen institutes. One of these institutes is TNO Building
and Construction Research. This institute has several departments, including
the department of engineering mechanics and information technology. One of
the main activities of this department is the development and enhancement of
the DIANA finite element analysis (FEA) system [Dia00].

DIANA is a general purpose system for analyzing the behavior of various
types of structures and materials. Use of DIANA allows detailed calculations to
be made of the behavior of complex structures under both static and dynamic
conditions. The importance of having reliable simulation models has increased
significantly with the need to use materials in a cost-effective manner and the
growth in the complexity of buildings and structures. Development of DIANA
started as early as 1972 as a vehicle for research in numerical algorithms ap-
plied to finite element analysis. From the mid-eighties onwards it has also
been applied to real-world engineering problems. Today, these engineering
problems constitute the majority of DIANA’s use. A recent example of its use
was for Rotterdam’s Erasmus bridge, where DIANA was used to calculate the
structure itself as well as specific smaller details [Dia92].

2.1.2 Finite element analysis

DIANA’s application domain is very broad, consisting of all areas where fi-
nite element analysis can be used. New algorithms and numerical methods
are continually added through strategic alliances with universities and other
computational mechanics research centers. Such a diverse application domain
implies a broad spectrum of users. Indeed, users are found in such diverse ar-
eas as universities, construction and engineering companies, a nuclear power
company, biology, and municipal organizations.

Finite element analysis can be applied to a wide variety of problems, but
the underlying principles remain the same. With finite element analysis, a
skeletal structure is assumed to be made up of a collection of two and three

1TNO is the abbreviation for ‘Toegepast Natuurwetenschappelijk Onderzoek’

22

2.1. CASE STUDY DESCRIPTION

Figure 2.1: Erasmus bridge, Rotterdam

dimensional elements, connected together at discrete joints. In this way a con-
tinuum with infinite degrees of freedom can be made discrete, and turned into
an equivalent system with finite degrees of freedom [CY79]. Finite Element
Methods (FEMs) can then be used to carry out numerical calculations on this
equivalent, simplified, system to study the actual structure.

Working with FEMs requires a number of steps to be followed. Here only
a brief overview is given. A more detailed example is given in Section 2.3.3.
More specific information on how these steps are done for DIANA can be found
in Appendix A. First, a model of the object under study, describing the geom-
etry, needs to be created. This can be done in a variety of ways, e.g. by hand,
using modelling software, or by importing the model from another application
such as a CAD system. During the second step, this model is meshed, i.e., it
is divided into small elements. The computation of the actual mesh is done
by DIANA, but the user needs to provide DIANA with information on how to
divide the model into a mesh. Again, this can be done by hand or by using
modelling software. The amount of elements depends mainly on the numeri-
cal algorithms used, and on the required accuracy of the results. A finer mesh
will yield better results, but will also cost more computing time. For larger
models the difference in computing time can be significant. Computations tak-
ing up to three weeks, using computers which were state-of-the-art in 1992,

23

CHAPTER 2. DIANA– A CASE STUDY

are not exceptional. As the machines get more powerfull, the models get more
complex, often keeping computational time constant.

In the third step additional characteristics of the model are defined. This
is done by hand when using DIANA. The characteristics are added to the file
describing the model and mesh. Materials, including several of their charac-
teristics, are assigned to the elements of the mesh. Additional constraints such
as loads are placed on the model, and boundary conditions are added. An ex-
ample mesh with boundary conditions and loads is shown in Figure 2.2. The
figure shows a square sheet of material, anchored at the left side, e.g. cemented
into a wall, and loaded at the right side, e.g. by placing weights at the far right
end of the sheet. The mesh is created by dividing the model of the sheet into
sixteen squares.

Figure 2.2: Example mesh of model with loads and constraints

Then, one or more calculations are carried out. These calculations are spec-
ified by hand. Often several calculations are defined at the same time, so that
the often lengthy calculations can run without further interruptions. For in-
stance, first the loads are calculated, yielding a distribution of loads through
the material. This in turn could affect small cracks defined in the model, and

24

2.1. CASE STUDY DESCRIPTION

a separate calculation can be carried out to calculate the effects of the load on
the cracks.

Finally, during the last step, the results of the calculations can be visualized
and analyzed in a number of ways. This is normally done by manually operat-
ing a separate application which can visualize the results from the calculations
in several ways. This analysis can trigger an iterative process where one or
more steps are refined further.

2.1.3 The I-DIANA project

The I-DIANA project was a large ongoing project at TNO Building and Con-
struction Research. The project goal was to create a graphical and interactive
user interface for DIANA. At the start of the project DIANA only had a batch-
oriented interface, and it was decided that a graphical and interactive interface
should be developed in addition to the batch mechanism.

Project motivation The main motivation for starting I-DIANA was market
pressure. DIANA is not the only software system for complex FEA calcula-
tions, and several of DIANA’s competitors already have graphical user inter-
faces. While DIANA still held a competitive edge with superior algorithms and
calculations, it was slowly losing market share.

TNO also wanted to increase its market share by selling DIANA to new user
populations, and the people in these new markets expected graphical user in-
terfaces. In DIANA’s traditional market, mostly research institutes and uni-
versities, users had been more interested in the numerical results than in its
interface. People in other markets, e.g. small engineering firms or civil engi-
neering departments of larger companies, are less interested in all the details
of the specific algorithms implementing their calculations. They simply want
to be able to do their job without any hassle, and without learning a complex
and arcane syntax.

Finally, some current users of DIANA, triggered by the advent of other
graphical interfaces for their desktop, were starting to ask for a better, more
user-friendly, user interface for DIANA.

Project environment The I-DIANA project was only one of several projects
aimed at further developing DIANA although all other projects were directed
at development of new or improved numerical analysis and algorithms.

25

CHAPTER 2. DIANA– A CASE STUDY

The project team for I-DIANA consisted of people already working on DI-
ANA for TNO, with the exception of the author. As each of these people had
particular skills with respect to DIANA e.g. writing manuals, system engineer-
ing, numerical algorithms, each of them participated in several projects at any
one time, because their expertise would be needed in each of these projects.
As a result, there was continuous tension and competition for resources be-
tween different projects; and priorities between projects would sometimes be
different for individual team members. In total, six people were involved in
the I-DIANA project, but each of them was also involved in one or more other
projects.

2.1.4 Relation between the case study and the I-DIANA project

Only part of the I-DIANA project was investigated for the case study. When the
case study started, the I-DIANA project had already begun. A core project team
had been formed and a first inventory of possibilities, goals, and problems had
been carried out.

Only part of the I-DIANA project was examined for two reasons. First, it
was estimated that the project would take a significant amount of time, at least
several years. The time available for the case study, however, was limited. Sec-
ond, not all parts of the project were deemed equally interesting with respect
to the problems noted in the previous chapter: creating the design of the in-
teractive system was the most interesting part of the project for this research.
Analysis was also included in the case study, both because it precedes design,
and because the results of the analysis process provide the input for the design
process.

Realization of the design, apart from some small prototypes as part of the
design process, testing, usability studies and implementation of the new soft-
ware in a user environment were specifically omitted.

The author participated actively in this case study as the user interface ex-
pert, carrying out user analysis, and leading the design of the user interface.
A participative role was chosen to gain a better understanding of carrying out
the design process for a complex interactive system. Observing an experienced
designer during a similar design process would not have yielded similar expe-
rience.

26

2.2. I-DIANA PROJECT APPROACH

2.2 I-DIANA Project approach

The I-DIANA project approach followed standard development steps: analysis,
design, realization, testing, and implementation. While these steps follow from
each other, they are not strictly separated and iteration between the different
steps is encouraged.

To make the design process more manageable, and to check continually
the software constraints of the project, one small, but representative, part of
DIANA was iteratively designed and implemented as a prototype. This design
was later extrapolated to all other parts of DIANA.

2.2.1 I-DIANA constraints

The major constraint for the I-DIANA project was a lack of manpower, which in-
hibited a total rewrite of the software. This constraint influenced the approach
taken as well as the outcome of the project. Several requirements resulted from
this constraint:

• maintain the current batch interface in the new system

• keep as much existing code as possible, major rewrites were not possible

• strive for gradual implementation so that some results can be delivered
quickly

As a consequence of these requirements, the design phase of the project
had to be closely coupled with part of the realization phase because a new user
interface had to work with the existing system. It also had consequences for the
analysis phase, for instance because no requirements were required to define
the underlying functionality, which was already present in DIANA.

Additional constraints were mostly related to less important details such as
the platforms on which the product should be available, and the development
methods and tools used for realization of the software and prototypes.

2.2.2 Analysis approach

Several textbooks on HCI give overviews of an approach for the analysis phase
[DFAB93, HH93, PRS+94]. All of them mention the use of task analysis during
this phase. In addition to this, each of the books takes a somewhat different
stance on analysis. Dix et al. emphasize usability and models of the user, but

27

CHAPTER 2. DIANA– A CASE STUDY

provide no additional guidance for carrying out analysis. Preece et al. detail
several methods for user-centered design, and talk about requirements gather-
ing at some length. Hix and Hartson list a number of different ‘early analysis
activities’, and show their relationships and dependencies. They also stress
the importance of ‘contextual inquiry’, and of having a domain expert on the
development team.

In summary, the textbooks provided much generic advice, e.g., involve
users in the design process; get to know the users, but little in the way of con-
crete methods to work with, other than task analysis methods. Based on this
advice the project team decided on three major goals for the analysis phase:

1. to involve users in the design process

2. to get to know the users

3. to apply task analysis

Involving users in design Almost all members of the development team had
experience in using FEA. They were not, however, typical users, as they had
more experience with developing numerical algorithms, or applying DIANA
towards very specific development oriented problems.

No ‘real’ users were included in the development team. Finding repre-
sentative users of DIANA is hard because DIANA is used in so many different
application domains: no single user or small set of users can be representative.
The only common factor between all domains is creating the input files, and
running DIANA on them; and all the members of the development team did
have experience with this.

We did involve users in the design by keeping them informed through user
group meetings. At these meetings, we also solicited feedback on our design
proposals.

Getting to know the users Getting to know DIANA’s users is a complicated
job, for two reasons. First, DIANA is used internationally, which means that
going out and talking to users is not possible in all cases. We were only able
to contact users in the Netherlands directly. For this reason we started the
analysis by sending out a questionnaire to DIANA users, hoping that this would
at least provide us with some user profiles, a general sense of how DIANA is
used, and expectations of and suggestions for the I-DIANA project.

28

2.2. I-DIANA PROJECT APPROACH

A questionnaire can not be regarded as a substitute for contextual inquiry.
We decided to use interviews with selected users to get information about work
context. Observation would not be a practical approach, because, in general,
real-world problems with DIANA take a long time to complete, up to several
weeks. In addition, we would only observe the user using DIANA and possibly
miss opportunities to get a feel for the real underlying problems and issues.

The interview design put a strong emphasis on the daily work of the users,
and the role of DIANA in their work. A major part of the interviews was spent
on talking through the life cycle of one of the current projects of the user. In a
sense this provided us with a condensed version of an observation.

Task analysis Since all textbooks recommended task analysis as a more for-
mal method for gathering information on the work of the user, this possibility
was also investigated. No specific method came highly recommended, so the
task analysis method described by Bots [Bot89], which was already familiar to
some members of the team, was selected.

Task analysis will help to provide an overview of the tasks of the users in
an organized and sructured way. Depending on the tasks and the system to
be designed, task analysis can either provide direct input towards the system
architecture, e.g. by suggesting menu layout or order of input screens. Other-
wise, task analysis will at least provide significant insight in what the users try
to accomplish with the system.

The main questions with respect to task analysis in this case were, first, to
what level of detail the tasks could be broken down, and second, whether tasks
could be considered accross the sometimes very different domains of DIANA’s
users.

2.2.3 Design approach

Standard textbooks on HCI do not give much support for a design approach
[DFAB93, HH93, PRS+94]. They move quickly on to more technical approaches
to design, such as representing interaction of the user with the interface and
use of metrics and guidelines. Real attention to the design process and to dif-
ferent approaches to designing interactive systems is not easily found, or only
superficially described. Several techniques that are described include concep-
tual design, scenario based design, design rationales , and prototyping. Most
of these techniques will be discussed in more detail in Chapter 3.

29

CHAPTER 2. DIANA– A CASE STUDY

Conceptual design. Conceptual design is not as much a particular technique
but more a very general approach. The idea is first to create a design in
which the actions and objects needed in the systems are identified and
placed in a logical framework so that they will support the user. While
this is an important step, no specific methods are identified. Examples in
the textbooks remain vague and informal. It is clear that this is an impor-
tant step to make, as it influences the overall impression of the system.

Scenario-based design. Using scenarios to influence design decisions is gain-
ing momentum. The idea is to create more detailed parts of the interface
of a system based on possible scenarios which describe part of the work
of the user. These ideas will be constrained and shaped by the conceptual
design made previously. The main advantage of using scenarios is that
it quickly becomes clear whether a particular approach in the system can
support the work of the user in a sensible way. By thinking about what
the users need to do with the system, it may become easier to influence
the design. Again, no formal techniques exist for scenario-based design.

Design rationales. The use of design rationales allows the designer to expand
the design space, to explore other alternatives to particular design prob-
lems. Essentially, the designer lists design problems, possible options to
solve those problems, and the criteria which the solution should satisfy.
The use of design rationales supports a structured way to explore design
alternatives.

Prototyping. Use of prototyping can help to assess a given design, both in
terms of technical feasibility, and in terms of usability. It is often used
to support testing scenarios, or to run general usability tests on the user
interface in an early stage.

Approach for I-DIANA Given the lack of formal methods and techniques
which could be applied, a formal approach for design in the I-DIANA project
was not written down, however both conceptual design and prototyping were
seen as important steps in the design process.

A conceptual design was deemed very important, because such a large sys-
tem, dealing with so much information, would have to be presented in a uni-
form way. The added complications of a very diverse user population made
it clear that good concepts would be very important. Several other finite ele-
ment analysis systems were studied to see what kind of concepts were used to
present the common objects and actions.

30

2.3. ANALYSIS OF CURRENT AND FUTURE USE OF DIANA

Prototyping was deemed important not only to get user feedback, but also
to assess the feasibility of the technical issues of the design. Adding an inter-
active user interface while also keeping the old system operational provided a
major technical challenge. Creating prototypes of proposed technical solutions
could help solve this problem.

The size of the project made it impossible to prototype all of it. Therefore
only one DIANA module was selected for prototyping. This selection was based
on current experience of the development team, and because the module pro-
vided a good representation of the different ways input and algorithms are
supported in DIANA.

The design process for I-DIANA had to be iterative, because there were still
many blank spots in the information collected during analysis when the first
design activities started, and because of the many technical constraints, that
required the exploration of possible solutions.

2.3 Analysis of current and future use of DIANA

During the analysis phase of the project, three major activities were under-
taken: sending a questionnaire, conducting a number of interviews, and ana-
lyzing tasks found during those interviews. In this section the results of these
activities are discussed briefly with an emphasis on the process of doing analy-
sis instead of the products of the analysis. The results of the questionnaire and
interviews are described in more detail in TNO reports [dG93, dG94].

2.3.1 The Questionnaire: a first profile of DIANA users

A questionnaire is not a very good way to get to know the user, as we came
to understand when we were drafting it. Multiple choice answers are often
preferred, because they are much easier to answer. Open questions have the
potential to be answered in a more complete, or unexpected, way, but often this
does not happen either, as it takes more of the respondent’s time and effort.
Furthermore, analyzing ones own work is very hard to do, because it requires
a fresh and neutral look at all activities associated with the work. Therefore a
questionnaire is not the best means to find out anything meaningful about the
work of the users. For this reason the questionnaire was targeted mainly as an
inventory of DIANA use. The diversity of DIANA users was already known, but
the extent and variation of this diversity was not known and the unraveling of
this diversity was the main target of the questionnaire.

31

CHAPTER 2. DIANA– A CASE STUDY

Additionally problems with the current way of working with DIANA were
also solicited, as were expectations and wishes regarding an interactive graphi-
cal interface. Not much feedback was expected on these latter items, they were
mostly added for completeness, and to allow people to express their thoughts
about these matters.

Respondents The questionnaire was sent out to all current users of DIANA
through the user contact group, for a total of sixty organizations. We received
15 responses.

What was most standing out was the variance between the respondants.
Some had up to 9 years of experience with DIANA, others less than a year.
Some used DIANA daily, others at most once a month. The type and size of
calculations carried out with DIANA also varied quite a bit.

DIANA user population The answers to the questionnaire provided a good
overview of the different types of organizations and application domains in
which DIANA is used. Four main categories of DIANA use can be distinguished:

Commercial production computations. Here DIANA is used for production-
oriented computations, e.g., whether a bridge is strong enough to sustain
traffic and sundry weather conditions, or whether a building will col-
lapse given the materials used. Computations are often small and detail
oriented, and similar in structure. DIANA is used occasionally, and access
to pre and post processors is limited. Users have experience with FEA.

Commercial research. Here DIANA is used for very specific and complex prob-
lems, often requiring specific domain expertise, e.g., new construction
methods or materials, or new types of structures. Both models and com-
putations are very large and one of a kind, and use of DIANA can be
extensive. Users have a good understanding of FEA, and additional pre
and post processes are available.

Educational organizations. Several universities use DIANA to teach the prac-
tical aspects of finite element analysis. Their use of DIANA is hard to
characterize. The instructors have considerable experience with DIANA,
while students do not. Models and computations are usually small, but
they vary quite a bit between users.

32

2.3. ANALYSIS OF CURRENT AND FUTURE USE OF DIANA

Research into numerical algorithms. The DIANA framework is also used to
work on new algorithms and numerical methods. Models and compu-
tations are small, and specifically created to test the algorithms. Users
have considerable experience with DIANA and FEA, and other software
is rarely used.

These four categories present only a very broad subdivision of DIANA’s
users and they do not take into account the diverse application domains de-
scribed earlier.

Comments on current use of DIANA Against expectations many respondents
gave good feedback on the open questions regarding current use of DIANA.
Only experienced users had few problems with DIANA, but they often admit-
ted to having problems once they had to use a module of DIANA which they
normally did not use.

Most problems, however, were encountered by novice users. Some of these
problems were related to internal DIANA issues. The fact that these issues sur-
faced through the user interface is due to the structure of DIANA, which is
explained in more detail in Appendix A. Two main themes ran through the
complaints:

Making mistakes in input is expensive. Most of the complaints were related
to the handling of mistakes in the input files. The batch-oriented nature
of DIANA makes it impossible to detect errors in the input until that part
of the input is actually processed. This could take several hours if the
error resides in parameters for a computation; DIANA stops immediately
after finding an error. Fixing several small syntactical errors in an input
file quickly becomes tedious and time consuming.

Too many options to choose from. DIANA provides a flexible environment for
finite element analysis, but as a consequence, there are many options
to choose from at any one point. Obviously the users do not complain
about having these options available, but each user only needs a frac-
tion of these options for their application domain. In addition, the conse-
quences of each option are often not very well explained. This can in part
be blamed on the manuals, but even the manuals cannot cope with all
the possible combinations of options. Currently users deal with this situ-
ation by re-using previous input files, and by trial and error. The latter in
particular, can be very time consuming and inefficient.

33

CHAPTER 2. DIANA– A CASE STUDY

Questions regarding a new graphical interactive interface The answers to
these questions were the least interesting. Most people responded positively
towards a graphical user interface for DIANA, expecting it would make work-
ing with DIANA more pleasant, more direct, and more interactive, and there-
fore easier for novice users, and that it would allow easier analysis of compu-
tational results.

Some concerns were also voiced, for example about a possible rise in the
cost of using DIANA, both for the software and because of the additional hard-
ware requirements. Some people concluded that the batch-oriented interface
might disappear, and protested against it either because they had custom tools
built to generate or modify input files, or because they were used to the current
batch-input system. Finally, some people expressed doubts whether a graph-
ical user interface would be more efficient, in particular for expert users who
were used to the cryptic but quick keystrokes.

The questionnaire also asked which elements of graphical user interfaces
should be included in DIANA, but no meaningful suggestions were made. The
suggestions all listed existing user interface elements, and were often in con-
tradiction with each other, e.g., one person might like to see many separate
windows, while another wanted just one window to work with.

In summary The purpose of the questionnaire was to get an overview of the
user population of DIANA, and to be able to categorize them. With an approxi-
mately 25% response rate and good representation across application domains,
the answers yielded enough information to be able to do this.

Although little response was expected to the questions regarding current
use, users felt strongly about this issue and provided many problems with
and observations on current use. This provided the development team with
a strong indication of the problems in the current batch-oriented implementa-
tion of DIANA.

Finally, the questions regarding the new graphical user interface did not
provide useful answers. Partly, this is because the questionnaire did not in-
clude any suggestions or hints on how the development team envisioned the
user interface, and partly because users found it hard to visualize a user inter-
face which would enable them to do their work, as some of them indicated in
their responses.

34

2.3. ANALYSIS OF CURRENT AND FUTURE USE OF DIANA

2.3.2 The interviews: fleshing out DIANA’s usage

The initial purpose of the interviews was to get a good sense of the work being
done with DIANA, and insight in how this work could be supported through
a graphical user interface. Users from each of the four main categories were
selected, based on their responses to the questionnaire and their geographical
accessibility. A total of six interviews were carried out.

Structure of the interview The interviews were conducted according to a
fixed structure in three sections to ensure that the information would be use-
ful. [tH88] The first section of the interview asked follow-up questions about
the questionnaire, either to clarify previous responses or to solicit additional
comments.

In the second, largest, section of the interview, the user was invited to dis-
cuss a recent project done using DIANA. Users were asked to bring relevant
material when they came to TNO to be interviewed. When they were inter-
viewed at their own workplace there would be enough information on recent
projects around. The life span of the project was then discussed, including
those parts not currently supported by DIANA. A discussion of a recent project
carried out by the user provided a natural way to discuss all aspects of the use
of DIANA, from preparing input files to analysis of the computational results;
and this part of the interviews provided us with the work context of DIANA
users, in particular because the discussions were augmented with real artifact-
sartifact.

Some paper prototypes of a potential interface for DIANA were shown dur-
ing the third section of the interview. The prototypes were very rough, with
many details still missing. They resulted from the initial conceptual design
described in Section 2.4. Again, the user’s project was used as a vehicle to
identify in which way DIANA’s interface might support parts of the process.
Where needed additional details were filled in by hand to facilitate discussion.
With these prototypes a step by step walkthrough was not possible because of
the level of complexity involved, making it hard to simulate the interface by
hand.

In summary The main goal of the interviews, to establish the work context
of users in the different user categories, was met. The main lesson learned
about the work context of DIANA was that there were large similarities be-
tween users of the different categories. These similarities were caused by the

35

CHAPTER 2. DIANA– A CASE STUDY

underlying similarities of the finite element methods, which prescribe a strict
order of working through a problem.

The problems with current use as noted above were further re-enforced by
the interviews. In fact, it was striking to see how many users re-used their
previous work in one way or another, often because this would, in the end, be
much quicker than to create input from scratch with all its associated problems
like not knowing the correct options or arguments for an option.

In addition the interviews resulted in detailed descriptions of the tasks
users carry out with DIANA. Although not initially planned that way, this part
of the interviews provided valuable input for the task analysis described in the
next section.

2.3.3 Task analysis: a formal analysis of DIANA’s usage

All three textbooks used as references contained sections on task analysis, and
suggested its use either during analysis, or as a means to structure information
during design. A task analysis was made of the work discussed in several of
the interviews. To describe and analyze the work presented in the interviews,
‘task structures’ and ‘decision structures’ [Bot89] were used. In a task structure
tasks are represented by boxes, and decisions by circles. In a decision structure,
decisions are again represented by circles, and information is represented by
boxes.

Example task analysis Consider the task structure presented in Figure 2.3,
which describes the construction of storage racks. The objective of this task is
to design such a construction as cheaply as possible, while still taking several
constraints such as strength into account. The price of the construction can be
varied by the material and profiles being used; details of the construction such
as reinforcements can also be varied.

The task structure shows the different tasks and branching points in this
job. The whole task is highly iterative. Several loops are used to try and im-
prove the different attributes of the problem. For instance, the small loop for
visualization is used to adjust the visualization parameters until the current
solution is properly visualized.

Several of these tasks could be detailed further, for instance ‘make computa-
tions’. Detailing these tasks, however, is not very interesting because the details
are obvious; further detailing them with smaller tasks will not add significant
insight into the work being done there. It would be much more interesting to

36

2.3. ANALYSIS OF CURRENT AND FUTURE USE OF DIANA

Validate
model

Make
computations

Make
visualization

Is visualization
clear enough?

Do results
meet criteria?

Find criteria

Make model

Is model valid?

Is model valid?

Are criteria possible?

Figure 2.3: Task structure: construction of storage racks

37

CHAPTER 2. DIANA– A CASE STUDY

further detail a task such as ‘validate model’. The constituent parts of this task
are not straightforward, and detailing the smaller tasks might help to better
understand how a user carries out this task. Unfortunately, further detailing
of this task proved to be impossible to do. The matter is that there is not one
single approach or recipe for validating the model. During the interviews we
noted that different users would often use different approaches, and, more im-
portantly, these approaches would depend on the problems under study, and
also vary with a single user.

The individual tasks could have been recorded and presented as a task
structure in each case. This would not have provided a starting point for de-
sign, though, because it would have resulted in a number of individual de-
scriptive models instead of a single prescriptive model that would be suited for
design. A prescriptive representation could be created, for instance by taking
the most common details, or by rationalizing the best approach. Users have
more experience of validating models, though, and it is very likely that this
single task structure would inhibit their work instead of augmenting it.

Bots proposes using ‘decision structures’ for such tasks which can not be
detailed further. Decision structures contain the individual decisions which
need to be made as part of the task, and the information needed for and result-
ing from each decision. An example of the decision structure ‘validate model’
is shown in Figure 2.4.

Analysis of the structures An analysis of the task and decision structures
shows that iteration is an important aspect of the problem solving process as-
sociated with making FEA calculations. A supporting tool should allow for
‘what if’ analysis, and provide rapid feedback on changes.

Use of Task Analysis All three textbooks recommended task analysis in one
form or another. In this case task analysis proved to be useful to gain insight
in the work of DIANA’s users in a structured way. The technique’s main value
turned out to be its descriptive power. In contrast with what the textbooks
seem to imply, not all activities could be modelled in a meaningfull and de-
tailed enough way with task analysis. It did yield a good visual description of
the iterative and exploratory nature of the tasks, which can serve as a starting
point for the conceptual design which is described in the next section.

38

2.4. DESIGN OF A GRAPHICAL USER INTERFACE FOR DIANA

Construction
knowledge

Laws of
physics

Visualization
of the model

Data of
the model

Output from
system reports

Is model valid?

Valid model

Figure 2.4: Decision structure: validate model

2.4 Design of a graphical user interface for DIANA

The conceptual design work done for the I-DIANA project is described in this
section. Other design work was done for the project, such as more detailed
screen layouts and additional work on menu structure, etc. This design work
falls outside the scope of the case study because they are primarily aimed at
implementing the system, and is therefore omitted.

2.4.1 Approach for creating a conceptual design

The approach for creating a conceptual design for I-DIANA started with an
analysis of several DIANA competitors that already had a graphical user in-
terface. The idea was not so much to mimic their approach to the interface, but
rather to observe how different FEM concepts had been translated into inter-
face concepts, and how well this had actually worked out.

Conceptual design of competing products Two similar products were avail-
able for study. Example screens of these products, MARC/MENTAT II and

39

CHAPTER 2. DIANA– A CASE STUDY

I-DEAS, are shown in Figure 2.5 and Figure 2.6, respectively. Both were briefly
studied.

The main concept of the interface was identical for both systems. In each
interface the representation of the model takes a central place in the user inter-
face. This representation is used to define the model, create the mesh and to
add boundary conditions, constraints, and other loads. The representation al-
ways reflects the current state of the input, and changes over time with changes
in input. The model representation is displayed in a large window, which is the
focal point of the interface. Calculations are also set up and executed through
this interface, with a graphical rendering of the results being displayed in the
same representation area.

Figure 2.5: Screenshot: MENTAT II mesh definition

Additional input, control, and output tools are displayed in separate win-
dows, one for each set of functions. These windows can be located around or
over the main window, depending on use and personal preference. Access to

40

2.4. DESIGN OF A GRAPHICAL USER INTERFACE FOR DIANA

these windows is provided through a large menu structure, or, when the func-
tionality depends on functionality already present, through other windows.

Consider, as an example, Figure 2.5 which shows the initial steps of a mesh
definition using MENTAT II [MAR96a]. Clearly the model provides the main
focus point in this interface. Instead of actual physical windows, MENTAT
II uses fixed areas of its window to provide access to the different functions
available in the system. It is also noteworthy that the command line interface
is visible at the bottom of the screen, this provides a means to enter commands
using the keyboard as well in MENTAT’s command language.

The I-DEAS interface is displayed in Figure 2.6. While this interface looks
different, it is actually strikingly similar to the MENTAT II interface. The only
difference worth noting is that I-DEAS uses separate windows, for the four
main functional areas of the interface, allowing the user some more flexibility
in arranging these areas. I-DEAS also clearly provides a strong focus on the
model, which will be shown in the Graphics Window.

Figure 2.6: Overview of the I-DEAS user interface

41

CHAPTER 2. DIANA– A CASE STUDY

Lessons learned for DIANA’s conceptual design A major lesson learned by
looking at the competitors’ products was that a visual representation of the
model is very important. Both competitors had put great emphasis on pre-
senting a visual representation of the current model. This emphasis was in
accordance with the results obtained from the interviews (Section 2.3.2) and
the task analysis (Section 2.3.3) carried out during the analysis phase.

In terms of organization, both systems use a similar approach. Options are
presented through a menu structure. Once the options get detailed enough,
values can be entered. The menu structure is organized into several different
functional groupings, for instance, all options and functions regarding creating
a mesh are grouped together. This makes it easy to remain in this ‘mode’ of
functions while working on the mesh, and then to switch to another group of
functions for another task.

2.4.2 Prototyping for technical feasibility

The technical heritage attached to the DIANA project implied that prototyping
must be done right from the start, not to validate the current design ideas, but
rather to assess the technical feasibility of the design implementation.

The architecture of the current DIANA code was not suited to use in an inter-
active system. Since rewriting it was not an option, only small improvements
could be made. The problem with the existing architecture is its strong depen-
dence on structured batch input. This architecture is assumed throughout all
code, e.g., input is not checked until a relevant module needs to look at it. As
a consequence, each module knows its options, dependencies, and valid com-
mands, but this information is not available at a higher level of the software.
In fact, a module only knows which options are valid at a given position in
the input file when it has successfully parsed all previous input. Appendix A
describes this architecture in more detail.

To construct the information for model building and computation specifica-
tion in an interactive way, this information needs to be available much earlier.
One would like to have all dependencies, constraints, etc., beforehand, so that
they can be used to create a proper presentation of available options to the
user. Given that it was not possible to do a major rewrite of the DIANA code,
some elaborate ‘tricks’ were needed to distill this information from the current
code so that it could be presented to the user in an interactive way. Testing
these ‘tricks’ required early and extensive technical prototyping. This early
prototyping had its consequences on the design process in that it consumed
considerable time, and limited design options.

42

2.4. DESIGN OF A GRAPHICAL USER INTERFACE FOR DIANA

2.4.3 Conceptual design: 1st generation

The first generation of the conceptual design for I-DIANA was initiated before it
became clear that the current software could not be changed significantly. The
focus of the design was similar to those of the competitors shown in Figure 2.5
and Figure 2.6. It provided an interface with a focus on the most tangible part
of finite element analysis: the model to be analyzed. It consisted of a single
large model view, and several buttons and menu bars to allow access to all
functionality of the system. This type of design makes it possible to address
two of the three important issues found during analysis: better support for
input and better error handling.

Better, interactive, input support is almost automatically supported by this
type of interface. Direct manipulation of the model, as was implemented by
the two competing systems, can be easily supported because it is central to the
interface. The visual representation of the model also makes supporting input
easier. For instance, nodes can be placed and connected visually. Error han-
dling is improved in a similar manner: when errors occur during user input,
they can be noted immediately, and, if applicable, their location in the model
can be shown visually.

Design problems for this concept Two main problems are found when this
concept needs to be translated into an actual interface design.

First, it is hard to design the representation so that it can be used easily. The
model representation is often three dimensional, but needs to be displayed
in two dimensions. This in itself does not pose a big problem, but when ad-
ditional information about the model is added the display quickly becomes
cluttered. So many attributes and properties can possibly be displayed on the
model that the display can become cluttered and useless. Designing which
data needs to be displayed, and which different types of data need to be super-
imposed, is hard because of the amount of options and their interdependencies.

Second, organizing all the functionality of DIANA in this interface is also
hard. Analysis made it clear that there are many different groups of users. Each
of these groups uses a different small subset of DIANA’s functionality; because
each group uses a different but overlapping subset of functionality it is very
hard to group functionality in such a way that it can easily be used by each
group. DIANA does provide its own grouping, but this grouping is rooted in
the types of algorithms and problems being addressed, not in the way people
work with DIANA.

43

CHAPTER 2. DIANA– A CASE STUDY

Evaluation of the 1st conceptual design Before trying to solve these design
problems, the first conceptual design was first evaluated by the development
team. There was much discussion about this approach, and in general there
was a consensus that this would be a very good approach towards a new user
interface for DIANA. The experience with competitive systems in particular
supported this opinion.

Doubts were voiced by the software engineers. They pointed out that this
would require a major rewrite of almost all the existing code of DIANA. Ob-
viously the current algorithms and structure could be re-used, but even just
rewriting all existing code would require a tremendous effort. The effort might
better be spent on developing new DIANA modules. They also warned that
this would likely introduce new bugs into existing, stable, and tested code.
The software engineers argued that a rewrite would be necessary because the
current code did not support such an interactive approach; and the continuous
visualization, including input through the visual representation of the model,
was conceptually very different from the current approach with input files con-
taining tables.

The tight budget for development of I-DIANA, both in terms of manpower
and money, made the project leader decide not to pursue this particular design
approach, but rather try to find an approach that would not involve such a
major rewrite. His decision was supported by several arguments. First, it was
not clear whether such a large project, including a complete rewrite, could be
supported financially, and second, such a major rewrite would take too long.
An initial rough estimate was 2–3 years before a shippable version could be de-
livered, while the people backing the project financially wanted to see at least
some progress or results at a much earlier stage. Finally, such a major rewrite
would also mean moving away from the current batch-oriented philosophy,
possibly losing this feature altogether and there was some concern that this
would alienate existing users.

2.4.4 Conceptual design: 2nd generation

The decision not to pursue the first design approach added additional con-
straints to the I-DIANA project. Most importantly, the new interface would
have to be compatible with the current implementation of DIANA and keep
the current structure intact. The biggest consequence for the conceptual design
was that the interactive visualization could not be realized. It was simply too
different from the current structure of DIANA.

This led to a revision of the goal for I-DIANA:

44

2.4. DESIGN OF A GRAPHICAL USER INTERFACE FOR DIANA

Redesign the current ‘control’ layer to be interactive, and extend its func-
tionality where possible.

The ‘control’ layer controls all communication between the user and the DIANA
modules. It currently does this by parsing the batch files and passing on the
relevant parts to the modules. In the new design the ‘control’ layer would be
extended to be interactive. The planned improvements are summarized in the
following four goals:

• realize interactive creation and editing of input files, including interactive
support for syntactic and semantic errors;

• allow visualization simultaneous with input, without explicitly creating
a suitable input file;

• support for arranging the calculations to be made and their parameters;

• manage and track ongoing calculations, e.g., by showing timing esti-
mates and current status.

While this approach poses an important improvement over the current sit-
uation, it does not address all the issues raised during analysis. In particular,
interaction would be much less well supported when compared to the previous
design approach, primarily because it lacks a visual, interactive, representation
of the FEA model.

Creating input files through the user interface Creating the input files was
seen as the hardest problem of this conceptual design, both from a technical
and a design viewpoint.

The design problem with creating an input file is that there are so many
possible options available at any time, and that these options have complex
interdependencies. Solutions need to be found to present the options and their
relationships, and for navigating through the options. A prerequisite for mak-
ing this possible is that the allowed options and relationships are known in
advance. The following list of requirements should ensure a good design for
the creation of input files:

• entering options and values should be flexible;

• it should be easy to go back or undo options;

45

CHAPTER 2. DIANA– A CASE STUDY

• error messages should appear at the moment the errors are made;

• all options should be listed in a hierarchy so that the user knows what
options are available and what the result of choosing one will be.

Unfortunately technical barriers prevented us from fully satisfying these
requirements. To understand why, some knowledge of DIANA internals is
needed. The architecture of DIANA consists of a number of independent mod-
ules, each of which is subdivided into individual segments. Responsibilities,
e.g., parsing of the input file, or checking values for options, are pushed down
as much as possible onto the segments. This keeps the system flexible, and
allows individual segments to be added or changed easily, but the implication
is that arguments are not checked until the segment they belong to is actually
run. In part, this can not be avoided because some options or values depend on
results obtained from earlier calculations, however most options, and in par-
ticular the syntax, could be checked earlier. The reason for not doing this now
is that in a batch environment it is easier to make a single pass through all the
input instead of two separate ones.

This architecture makes it all but impossible to know all options and rela-
tionships in advance. The information is encoded directly into the individual
segments, and can not be parsed from it. In fact, as DIANA’s technical writer
admitted, even the manuals do not contain all the detailed information on the
relationships between options.

2.4.5 Conceptual design: 2nd generation, revised

The second conceptual design was revised to accommodate the technical lim-
itations. Unfortunately, this could only be done by sacrificing some of the re-
quirements for supporting input. In particular, going back and undoing an op-
tion, and getting a hierarchy of possible options could not be satisfied within
the technical constraints. Although this design would still support users better
than the batch input system, it also did not address several of the items found
during analysis.

Possibilities within technical constraints The final design that complied to
the technical constraints was essentially an interactive interpreter for DIANA.
This interpreter interacts with the user, asking for options and parameters. It
then presents the input to the relevant segments of DIANA, and parses the re-
sults of the segments. The interpreter can then present new options as indi-

46

2.4. DESIGN OF A GRAPHICAL USER INTERFACE FOR DIANA

cated by the segments, or display error messages if there were any, along with
a possibility to correct the problem.

While this method was desirable from a technical viewpoint, it was not
very good in terms of user-centered design. Interaction suffered because only
a single path can easily be followed. Backing up and trying something else, a
useful strategy in what-if explorations, is no longer possible.

Making corrections is also a problem, due to the way DIANA stores and pro-
cesses state information on an input file. Making syntactic changes is no prob-
lem, for instance changing a number because it is integer while a real number
was expected; but if an error is caused by erroneous input earlier in the input
file, then it becomes much harder to fix, because none of the segments expect
the user to take back arguments.

General user-oriented problems with DIANA While creating the conceptual
designs, the development team came to realize that many of the problems of
current DIANA users were not so much related to a particular (graphical) inter-
face for DIANA, but that they were caused more often by structural problems
with DIANA.

Error messages, for instance, were often cryptic. They were usually mean-
ingful only to the author of the segment which generated the message, but
users who knew nothing about this specific implementation were mystified.
Error messages were often phrased in internal DIANA terms, or simply did not
give enough information to correct the problem. Some users told us in inter-
views about their interpretations of such cryptic messages. Users also com-
plained about the way errors were reported, often hidden between all the nu-
merical output generated by other segments. As a result it can sometimes be
very hard to determine why a particular calculation has terminated prema-
turely.

Another important point was the organization of input handling. DIANA’s
structure has grown through history, and may make sense from some view-
points, but not from others. A critical look towards organization and grouping
of modules and segments might help to make DIANA easier to understand in
more situations; also, more lenient or flexible option parsing might help to
avoid many of the errors made during input. For instance, if an option is ex-
pected to be a real number, and an integer is encountered, this could be flagged
as a warning, but the input system could still convert the integer and continue.

47

CHAPTER 2. DIANA– A CASE STUDY

Prototype for the 2nd conceptual design A screen shot of an early prototype
is shown in Figure 2.7. In this situation the user is providing information on
loads to be added to the model. In DIANA related loads are grouped together
in cases. When entering new loads into the model, three options are normally
available: a new load case can be added, a new influence, i.e., a specific type of
load, can be added, or a combination of existing load cases can be added. Since
the user in the prototype just started adding load cases, no combination can be
added yet, because this requires two cases to exist.

Figure 2.7: Early prototype screen shot of entering an input file

The screen shot shows the main window of the prototype with a menu
bar controlling all interaction with DIANA. Adding loads is part of the Build
model menu. The input loads window allows the user to add loads to the
model. When this window first appears, it contains the menu loads menu,
which allows the user to indicate which type of load needs to be added. Since
no loads have been entered yet, no combinations can be made. This is indicated
by the ! sign in front of the COMBINoption.

In the screen shot the user has selected the CASEoption to enter a new load
case. DIANA has responded to this request by adding a new widget, case

48

2.4. DESIGN OF A GRAPHICAL USER INTERFACE FOR DIANA

number , to the input loads window. This widget allows the user to enter
the number of the load case to be added. For purposes of demonstration the
user has entered an A as a case number instead of a valid number. This triggers
an error in the input, which is signalled by showing an error window explain-
ing the problem. After acknowledging the error by clicking the Ok button, the
user can either correct the problem by entering a correct case number, or use
the previous field button to revert to the menu loads menu.

Task grouping through the menu bar The main steps of finite element anal-
ysis are reflected in the menu bar. Project , Configuration , and Help are
functions which are not specifically related to FEA, but which support the work
and add additional value to the user interface. The menu items Build model ,
Analysis , and Post-processing resemble the three steps of the FEA pro-
cess. Build model is equivalent to the creation of input files. Analysis is
equivalent to the creation of command files, and running them through DIANA.
Post-processing has no direct equivalent in DIANA, because it used to be
done through input and command files, and a separate visualization program.

Use of preferences and configurations Creating small and domain specific
interfaces, the last of three important issues found during analysis, was partly
addressed through the configuration mechanism, located under the Config-
uration menu. With this configuration system, users of DIANA are able to se-
lect the modules and materials which they normally use. During model build-
ing and analysis selection I-DIANA uses this information to only show those
options which are valid or useful according to the current configuration. This
cuts down significantly on the amount of options and possible arguments. It
is important to note that this configuration is done in terms of the user, e.g.,
selecting types of calculations, or types of materials, and that users can create
their own configuration.

Evaluation of conceptual design Evaluation of this conceptual design indi-
cates several shortcomings. Most importantly, interaction is not very well sup-
ported. There is some interaction in the sense that input is evaluated immedi-
ately, but these changes are not reflected immediately in the model representa-
tion, so it is not possible to have an interactive dialogue with the model data
directly.

Error and input handling are much improved over the batch-oriented im-
plementation. Errors are shown as soon as they can be found, they are clearly

49

CHAPTER 2. DIANA– A CASE STUDY

presented, and their texts are being adjusted to yield more meaningful infor-
mation. Input is also much improved, because all available options are now
presented, as the type of arguments is clearly reflected by the interface, and be-
cause an overview of completed input is shown. One remaining problem with
input is that only the next option or argument is shown at any time. This makes
it hard to estimate what will happen after this argument has been entered.

Finally, small and domain specific interfaces are partly implemented with
the configuration mechanism. This mechanism can be accessed through the
Configuration menu item. This approach helps to keep down the amount
of options and arguments and therefore makes the interface more manageable.
It does not address the underlying issue, though, which is that users want to
have a subset of functionality which resembles their particular domain, using
appropriate wording for it, and to have pre-defined short cuts particular to this
domain.

Still, this design approach addresses a fair number of complaints about the
current batch-oriented implementation. It is expected that this new interface
will make it easier for novices to work with the DIANA environment.

2.5 Reflections

The goals for the case study described in this chapter were:

• to apply current techniques and methods for analysis and design of in-
teractive systems;

• to observe what kind of problems surface while doing this;

• to analyze the causes and generality of these problems.

A description of the analysis and design process was given in Sections 2.3
and 2.4 respectively. The two sections below contain reflections on both pro-
cesses.

2.5.1 Reflections on the analysis process

Three different instruments were used during the analysis process to collect
information: a questionnaire, interviews and task analysis.

50

2.5. REFLECTIONS

Questionnaire The questionnaire fulfilled its goal quite well. As expected it
provided a broad overview of DIANA’s users, their application domains and
their problems with DIANA. It did not provide much detail on any of these ar-
eas. The questionnaire was particularly successful in this case because DIANA
users are such a heterogeneous and wide spread group. Obtaining a small
sample of representative users is difficult without first knowing what types of
users are present in what quantities.

Interviews After analyzing the results from the questionnaire a representa-
tive set of users could be determined for use during the interviews. The inter-
views proved to be very successful for getting a good overview of the different
ways in which people work with DIANA, of their problems and their solutions.
The interviews worked particularly well because they were grounded in the
context of the current projects of the users interviewed. Allowing users to talk
about their own projects in their own work environment allowed us to gain
considerable insight in the way DIANA is used by its current users and how
they incorporate DIANA in their work.

Task analysis The task analysis was done according to Bots’ method [Bot89].
The author was already familiar with this particular type of task analysis, and
knew about its strengths and weaknesses. Given the amount of problem solv-
ing involved in carrying out FEA, this task analysis method seems suited, as it
is designed specifically for these kinds of problems.

None of the textbooks gave specific recommendations for one method or
another; some form of HTA (Hierarchical Task Analysis) is generally used to
explain the concept, and in fact most task analysis methods use some form of
HTA. Bots’ method also supports this, but adds to it by providing a means to
chart those tasks which can not easily be unraveled. In short, Bots’ method
seems to be better suited for charting FEA work than other task analysis meth-
ods, because it acknowledges that some tasks cannot be detailed further, while
still providing support for these tasks.

The interviews were the primary source of information for modeling the
tasks, and the tasks were modeled on a basis of the notes made during the in-
terviews. This process was facilitated by the structure of the interviews. Dur-
ing each interview a current or recently finished project was discussed. In each
case the full lifespan of the project was discussed in chronological order, and
the interesting or complex points were further detailed. This provided enough
information on the global task hierarchy, and additional detail for those tasks

51

CHAPTER 2. DIANA– A CASE STUDY

that were considered to be complex or interesting. In addition to the inter-
views, task analysis was also aided by the DIANA experience within the design
team.

It can be argued that this approach was not exhaustive enough, for instance
because the project was only discussed, instead of observed, or because only
a single project was discussed in each interview. These issues do not seem
to have caused problems. Most interviewees use DIANA as part of their pro-
fessional work, and consequently they keep extensive records and notes of a
project. Using these records and notes provided a level of detail at least as
good as observation would have given.

Although each interviewee mostly discussed a single project, references to
other projects were also made or asked for. The interviewees would often vol-
unteer how similar problems were solved in other projects, especially when
the current project used a non-standard solution.

It could be argued that in this case task analysis was not a succes because
the resulting task descriptions are not detailed enough. This is not quite true:
task analysis did work, but only for the higher level tasks. These do not really
provide much information, however, apart from some structure for the system
as a whole. These high level tasks ended pretty much at the level of those
described in Figure 2.3. Getting more detailed task descriptions was not possi-
ble, as is explained in the section accompanying the figure. Fortunately, Bots’
decision structures did give some means to describe these tasks further.

With the use of a questionnaire, interviews and to some extent task anal-
ysis, not much information was missing to start the design process, based on
the recommendations made by the HCI textbooks used. Some additional infor-
mation might be needed later, e.g., actual artifacts used during working with
DIANA, or additional observations of people working on FEA problems, but
these would only add more detail. We felt no significant information was lack-
ing when we finished the analysis process. Obviously additional information
could always be collected during the design process once the need for this in-
formation had been established.

2.5.2 Reflections on the design phase

The HCI textbooks used recommend four instruments for supporting the de-
sign process: use of design rationales, conceptual design, scenario-based de-
sign, and prototyping.

52

2.5. REFLECTIONS

Design rationales Design rationales were not used. While this is a useful
technique for exploring the different alternatives and consequences of particu-
lar decisions, it does seem to be geared more towards those choices where one
of a set of options can be selected. Such design decisions usually start to oc-
cur later in the design process, for instance when particular interface decisions
need to be made. It appears to be less useful early in the design process, when
the choices are not yet known, let alone the options.

Conceptual design Conceptual design was the first instrument to be used to
support design. As mentioned earlier, conceptual design is not a technique
which can be used, but rather a more abstract approach towards design, before
looking at the specifications of the user interface and its appearance. The key
notion of conceptual design is to describe the concepts, objects, and functions
of a system. It is hoped that these can be described without adding user in-
terface details, and that this can provide ample possibilities for discussion and
evaluation of the design.

During the case study two different conceptual designs were made, and
they were described earlier in this chapter in Sections 2.4.3 and 2.4.4. Both of
the descriptions are textual and often somewhat implicit. They were described
in this way because there appears to be no representation for a conceptual de-
sign. None of the HCI textbooks give suggestions for such a representation, nor
do any other publications we are aware of.

During the case study a number of communication problems surfaced in
the design team. Since no particular representation was used, the conceptual
designs were communicated through textual descriptions and verbal presenta-
tions, and both of these forms were open to different interpretations by differ-
ent members of the design team. Recognizing and resolving these differences
in communication took a lot of effort which could have better been used else-
where.

In addition to the differences in interpretation, the abstract nature of the tex-
tual description of the conceptual design also caused trouble, because some of
the design team members could not easily deal with this abstract description.
A common solution to this type of problem is to use screenshots, sketches, or
something similarly tangible. With DIANA’s conceptual design this proved to
be hard to do because many of the design issues were more abstract than could
be represented by sketches; also, by using sketches for these issues, some im-
plicit decisions would have to be made about the visual interface. This clashes
with the goal of conceptual design in that it is meant to focus on the design

53

CHAPTER 2. DIANA– A CASE STUDY

at a higher level than the widgets and windows of the interface. Finally, us-
ing sketches usually solicited discussion about the sketches or the associated
interface issue, not about the real underlying issues.

Finally, using a textual representation for the conceptual design resulted in
one more problem: dealing with the complexity of the design. The amount of
information, issues, and relationships between them was very large; keeping
them all in good order, in particular with respect to their relationships, proved
to be very difficult.

Use of scenarios The use of scenarios during design was greatly simplified
by having the results of the interviews available. Each interview provided a
detailed walk through of a project. Each of these walk throughs could be used
as a scenario during design. Scenarios were used primarily to evaluate specific
designs, i.e. when a specific design idea emerged from the design team, it was
often tested by running it through a few of the scenarios collected with the
interviews.

Use of prototyping Prototyping was used primarily to evaluate the technical
consequences of different design approaches. It was not used much for user
testing, because no user testable prototypes could be created within the time
frame of the case study.

Overall evaluation What was noteworthy about the design process for I-
DIANA was that the whole design problem was so different from the examples
given in the three HCI textbooks used as references.

One important difference was that the I-DIANA project team tried to ren-
ovate existing software, while the textbooks all assume that a system will be
developed from scratch. With the large amount of currently installed systems
this issue is likely to become more important over time.

With such a renovation project it is important to realize the distinction be-
tween the user interface and the interactive system itself. A bad or unusable
system can only be improved marginally by a good user interface. Often it is
much more important to improve the interactive system itself. This was also
the case with this case study. For instance, improving error checking by mak-
ing checks earlier and by improving the error messages improved the quality
of the system without any changes to the user interface.

54

2.5. REFLECTIONS

2.5.3 The case study and the research questions

It is important to retain sight of the relationship between the case study and
the research questions posed in Section 1.3 for the remainder of this thesis.

Question 1

How can we formulate the design activity for interactive systems which
facilitate ill-structured work?

This research question asks which activities are needed for design, with a
particular focus on those activities related to ill-structured work. In this case
study several relevant observations have been made.

The interviews proved to be a useful activity, although strictly speaking
this would be an analysis activity. The interviews were particularly useful to
uncover work context, which in turn gave a great deal of insight into the ill-
structured parts of the work, for example by showing the forces outside the
system involved with a decision.

Task analysis did prove to be useful too by providing structure at the high-
est level of the design. Once ill-structured parts of the work needed to be de-
scribed, task analysis was not able to deal with this. The specific task analysis
method used did at least have some representation for ill-structured tasks in
the form of decision structures. Based on the HCI textbooks this is not likely to
be available in many of the other task analysis methods.

The HCI textbooks did not offer much concrete support for creating the con-
ceptual design. This is in line with the progression of the field as described in
Section 1.2.3. Clearly some more guidance at this point in the design process
could prove to be beneficial to the overall results.

Question 2

How can ill-structured work be described explicitly during design without
reverting to interface components?

The case study has not provided much insight into this question, although
some experience was gained with a few ways of representing design informa-
tion.

Most of the design information in the case study was purely textual in na-
ture, sometimes accompanied by sketches or mock-up screenshots. While the
textual representation provides a wide range of possibilities, it is very much

55

CHAPTER 2. DIANA– A CASE STUDY

open for interpretation. In fact, the design team did have communication trou-
bles on a number of occasions because of different interpretation of the same
design document.

The graphics that were included mostly were showing screens in the pro-
posed interface. This often caused the focus of the discussion to shift to the
details of that screen and of the sketch itself, instead of focusing the discussion
on the big picture of the whole design and the role of the sketch in that.

Finally, the case study made clear that the information which needs to be
addressed during design has a high level of complexity, especially in real-
world problems.

Question 3

How can it be ensured that the formulated design activities and representa-
tion of ill-structured work provide a usable, workable, and fitting solution
towards the design of interactive systems facilitating ill-structured work?

This case study has made the importance and relevance of this question
clear. The communication problems within the design team show that a us-
able, workable, and fitting solution for the design process does not happen au-
tomatically. One of the reasons is that not everyone in the design team relates
to a textual description of the conceptual desing in the same way, as described
in Section 2.5.2. The two major issues found during the case study where the
fact that the representation of the conceptual design was completely free-form,
without any particular pre-defined structure, and the fact that only text was
used. During the formulation of the design activities and representations in
the remainder of the thesis care needs to be taken in this respect.

56

CHAPTER 3

Human Computer Interaction

A case study was presented in the previous chapter, describing the analysis
and design of a usable complex interactive system aimed at supporting ill-
structured work. The conclusions drawn from this case study were that current
theory as described in HCI textbooks does not provide sufficient guidance for
this process. In particular, support for creating a conceptual design and work-
ing with it is lacking [WZ96]; also, task analysis does not yield as much benefit
as the textbooks suggest.

These issues are further explored in this chapter. General textbooks such
as those used in the case study [DFAB93, HH93, PRS+94] are limited by their
nature. They try to give a balanced and stable overview of the whole field
of HCI, and cannot be expected to give much detail on specific issues. This
chapter contains an exploration of additional information on task analysis and
conceptual design, and whether this will provide further insights and methods
not mentioned in the textbooks. This chapter also provides some definitions of
several of the terms used in this thesis.

57

CHAPTER 3. HUMAN COMPUTER INTERACTION

3.1 Terminology

The terms and definitions used in conjunction with the design of interactive
systems are often confusing because they mean different things to different
people. In this section a number of these terms are defined according to their
use in this thesis.

3.1.1 The development process

In this thesis the development process is taken to be the whole process of de-
veloping an interactive system, starting with the first ideas about developing
it, and ending when the system is in use. As such, the development process
spawns a wide variety of activities. The research questions posed in this thesis
are concerned with only part of the whole development process.

The analysis, design, and realization activities are the parts of the develop-
ment process mostly referred to in design literature [Jon92, RE91, for example].
Several additional activities can be identified, such as evaluation [But96], and
implementation, i.e. the actual introduction of the system in the workplace.
All these activities combined make up the development process. It is impor-
tant to stress that no specific order of activities is implied. Some precedence
relations exist between these activities, for instance, the design process can not
be started before at least some analysis has been done. The iterative nature of
the development process, however, precludes any ordering between the differ-
ent processes, and they should all be considered to be interconnected [Law90].
The boundaries between the different activities within the development pro-
cess can be very hard to determine. Lawson argues that the products of these
activities are what actually matters, not the classification of each activity dur-
ing the development process [Law90]. In this thesis only analysis and design
activities are considered.

Analysis aims to understand the problem by collecting information. Collect-
ing information, both about the current situation and about the requirements
for and possibilities of the system to be developed, provides the designer with
a larger design space. More available information allows for more informed
design decisions, and it allows for different design solutions to be considered.

Design is the primary focus of this thesis. Its objective is to restructure the
information found during analysis in such a way that the problems which ini-
tiate a development process can be addressed. Design activities can be sub-
divided into smaller tasks, in particular when the design of systems is con-
sidered. As was already noted in the I-DIANA case study, it is useful to start

58

3.1. TERMINOLOGY

the design activity by making a conceptual design. In this thesis this part of
the design activity is also called the early design activity. During this design
phase a number of alternatives are often briefly developed, after which the
most promising alternative is further detailed, providing the basis for further
design activities.

This description is only one way to look at the development process. For
instance, Hartson and Hix propose a star life cycle for the development of in-
teractive systems [HH89]. This life cycle, shown in Figure 3.1, provides an
interconnected and highly iterative approach to development. The extent of
the central activity, evaluation, can vary significantly from essentially none to
extensive study. What remains constant is the focus on iteration, and on a
gradual shaping of the design through a succesion of activities.

Implementation

Evaluation

Prototyping

Conceptual
design

Requirements
specification

Task & function
analysis

Figure 3.1: Star life cycle [HH89]

3.1.2 Interactive systems

Given the background and topic of this thesis some people might be confused
by the use of the term ‘interactive system’. Instead, they would argue, ‘user
interface’ should have been used. This argumentation is based on the fact that
the user interface is the part of the system with which the user directly inter-
acts. It can be regarded as an interface in the traditional, software engineering,
sense: as a well-defined place where interaction between two system compo-

59

CHAPTER 3. HUMAN COMPUTER INTERACTION

nents occurs. It also pays homage to those times when the technical challenges
of graphical interfaces were the paramount concern of HCI. HCI practitioners
are currently finding out that the user interface is only one of a whole set of
issues with which they should be concerned. Therefore design of interactive
systems provides a much more inclusive term.

John Seely Brown, director of Xerox PARC, said in an interview that

"design is moving beyond objects to supporting relationships, to
work practice, to social intercourse. [. . .] I think more often of a
whole set of offerings around something, not of the product itself."
[Rhe95b].

In the remainder of the interview Brown keeps stressing, at several points, that
products can not be separated from the environment they are placed in. This
emphasis on the work environment is also witnessed by several of the new ap-
proaches for analysis such as those described in Section 3.2.5.

In the light of this growing attention to interactive systems as part of their
environment, it is clear that interaction designers should be concerned with
more than just the user interface. Buxton explains this by noting three levels of
interaction: physical, cognitive, and social interaction [Bux94].

• Physical interaction is related to our sense and control, and relates mostly
to what is often regarded as the user interface: that part of an interactive
system which we can see and manipulate.

• Cognitive interaction relates to our thinking and problem solving. Bux-
ton argues that this level of interaction is least developed, even though
it is the most important level for dealing with all data the information
revolution is producing. Some work done in this area includes Norman’s
affordances [Nor93] and research done by Gibson [Gib79].

• Social interaction provides a social context for interaction. This social
interaction is often lacking, although CSCW systems and a growing use
of computers for communication are changing this.

The user interface only deals with one of these levels of interaction: the
physical layer. Buxton shows that both the cognitive and social interaction are
important as well. Both go beyond the user interface: functionality and struc-
ture of the application may impede or stimulate understanding of the data,
the functionality may encode policy which has social influences in the work
environment.

60

3.1. TERMINOLOGY

Note that this does not mean that the user interface can be seen separately
from the interactive system at all. For instance, from the point of view of soft-
ware engineering it is preferable to separate the design and realization of the
user interface from the remainder of the application [vdMV92, for example].
This separation allows division of labor and modularization of the application,
both deemed good things from a software engineering point of view. This
leads to additional support for just considering the user interface, and nothing
else, though. Care should be taken to consider the implications on all levels of
interaction first, and only then look at the specifics of the user interface.

Newman and Lamming repeat many of the same points when discussing
interactive systems in their introduction. They add that the crucial property of
an interactive system is that it provides support for human activity [NL95]. The
design of the whole interactive system, from the point of view of supporting
its users with their work, is looked at in this thesis.

3.1.3 Tasks

This thesis contains many references to tasks and to related concepts such as
process, activity, and action. Unfortunately no single definition of these terms
is in general use. Every author or system uses the terms in slightly different
ways. The terms are used in this thesis in a consistent way, which is explained
below.

The differences between the different terms are a function of complexity
or length of the task. For instance, the term ‘action’ indicates something very
small and simple, while the term ‘process’ has a much lengthier association.
Even so, the meaning of a single term can vary a lot. Compare for instance the
use of the term ‘task’ by GOMS and by Bots’ method later in this chapter. In
GOMS tasks are defined to be very small and well-defined, while Bots defines
tasks at a much higher level of abstraction. In this thesis only three terms will
be used to describe parts of the work of a user. These terms are ‘objective’,
‘task’ and ‘action’.

Objective The term ‘objective’ describe the objectives of the work of the user.
Objectives provide the highest level of abstraction: their use allows a coarse
subdivision of the work. A related term found in other literature is ‘goal’. Ex-
amples of objectives are ‘revise chapter 3’ and ‘add markup for indices’.

61

CHAPTER 3. HUMAN COMPUTER INTERACTION

Task The term ‘task’ describes a self-contained piece of work. Normally sev-
eral tasks are needed to be able to reach an objective. A task differs from an
action in that a task usually includes some kind of problem solving or deci-
sion making, while actions are always straightforward. A task differs from
an objective in that a task is a description of what needs to be done, where an
objective describes the result which needs to be attained. Examples of tasks are
‘check English grammar of current sentence’ and ‘mark up important words in
current sentence’.

Action The term ‘action’ describes concrete interactions of the user with the
interface. An action is a well-defined sequence of steps the user carries out,
with no room for decisions. This makes an action the lowest level description of
a piece of work used in this thesis. In a different context the actual interactions
the user has, e.g. press mouse button, move mouse, and release button, might
also be used. Actions are the building blocks of the interactive system: their
presence determines what can be done in the system. Examples of actions are
‘delete word’ and ‘add author index marker at current location’.

3.1.4 Ill-structured work

The notion of ill-structured work is introduced in Chapter 1. This term is
derived from Sol, who discusses ill-structured work in the context of prob-
lem solving [Sol87a]. The distinction made by Sol between structured and ill-
structured work [Sol87b] is related to the distinction between Type I and Type
II work made by Panko and Sprague [PRS84]. Type I work is characterized by
a large volume of relative low cost transactions, well defined procedures, struc-
tured data, and an emphasis on efficiency. Type II work consists of fewer but
more costly transactions for which no definite procedure exists, transactions
that are performed using less structured and often ambiguous data, with an
emphasis on effectiveness. Landauer uses the distinction between Type I and
Type II work as a basis for his argumentation. He claims that large successes
have been made in automating Type I work, and that the drop in productivity
increase is due to the difficulty of automating Type II work in a similar way
[Lan95] (See also Section 1.1.2).

Model-oriented vs. procedure-oriented definitions Bots discusses the dif-
ference between structured, i.e. Type I, and ill-structured, i.e. Type II, tasks
in detail [Bot89]. In an attempt to better understand the ‘structuredness’ of

62

3.1. TERMINOLOGY

a problem, Bots explores two complementary types of definitions: procedure
oriented and model oriented.

Procedure oriented definitions focus on the novelty of the task, i.e., whether
it has been encountered before, in combination with a lack of predetermined
and explicit steps to carry out the task. These definitions are aimed at encoun-
ters with novel ill-structured problems. Once these problems are encountered
and it has become clear how they can be solved, the procedural definitions
of structuredness indicate that these problems are now considered to be struc-
tured. This outlook is less useful for working with interactive systems, because
often solving ill-structured problems is an integral part of the work carried out
using the system. These ill-structured problems will be encountered by the
users time and again while remaining ill-structured.

Model oriented definitions focus on how much is known about the prob-
lem, for instance whether it can be expressed in terms of objectives, variables
and relations. These definitions are a better match for interactive systems, be-
cause they make an effort to describe what the task is about, given that it is
unclear how the task can be carried out best. The complexity in interactive sys-
tems is often caused by the relations between affecting variables and outcomes
being unclear and because it is not clear what the outcome-affecting variables
are.

Basic components of problems Young recognizes three basic components of
problems, and argues that the structuredness of a problem depends on how
much is known of each of these components [You84]. These basic components
are: objectives, outcome-affecting variables, and relations between affecting
variables and outcomes.

The objectives in the context of an interactive system are clear only up to a
point. The interactive system is designed with particular objectives in mind, so
these objectives are clear. When the level of details descends to working on par-
ticular tasks, however, the objectives may well be unknown up front. Consider
for instance the task ‘Construction of storage racks’ described in the I-DIANA
case study on page 37. In this task the overall objective is clear, i.e. to create a
construction for storage racks within the given constraints of price, maximum
load, etc. The specific objectives for a problem depend on the exact constraints
of that problem. This means that the exact objectives of an ill-structured task
may not be known in advance, even though the overall objectives for the sys-
tem are known.

The outcome affecting variables are in effect the data objects which are ma-

63

CHAPTER 3. HUMAN COMPUTER INTERACTION

nipulated in the interactive system. All of these data objects need to be known
in the context of the interactive system, because they need to be explicitly in-
cluded in the system’s design. If a particular variable is not included in the
system, then it can not affect the outcome supported by the system, even if
perhaps it should.

The relationships between the outcome and the affecting variables is always
known internally in the system, because all of these relationships need to be
programmed explicitly into the system. This does not imply that the people
using the system will infer all these relationships, however, for instance be-
cause some of them can be hidden from direct observation, or because the rela-
tionships can cause chaotic behavior induced by their interdependencies. This
means that from the standpoint of the user the relationship between the out-
come and the affecting variables can be quite unclear.

In summary, the structuredness of a task in the context of this thesis de-
pends on how much is known about the objectives, and whether this depends
on a specific task, and on the complexity and clarity of the relationships be-
tween the outcome and the affecting variables. If not enough structure is avail-
able then no programme can be devised for the task, and it is considered to be
ill-structured.

3.2 Support for analysis

The three textbooks used during the I-DIANA case study all recommended task
analysis. Task analysis is further explored beyond what is offered in the text-
books in this section. The purpose of this exploration is to find out whether
task analysis can be used to give explicit attention to ill-structured work dur-
ing analysis. For a more exhaustive overview of task analysis methods refer to
Diaper [Dia89] and Kirwan [KA92].

After discussing task analysis in general, several new approaches towards
analysis for interactive systems design are explored briefly to see whether any
of them can aid in focusing attention on ill-structured work during analysis
and early design. One reason for looking at methods other than task analysis
is that task analysis alone will not be rich enough to capture all aspects of an
interactive system. Task analysis is mostly an algorithmic description of events
happening. It can be argued, however, that an interaction paradigm is more
rich than an algorithmic paradigm [Weg97], which implies that task analysis
may be a useful approximation, but can never fully describe what is going on.

64

3.2. SUPPORT FOR ANALYSIS

3.2.1 Task Analysis methods

The term ‘task analysis’ implies that some active type of analysis is conducted
on the tasks. With most methods this is only implicitly the case: these methods
consider construction of the task model to be the analysis. Methods that do
actively support analysis on a previously constructed task model are almost
always based on cognitive psychology theory and principles. The purpose of
such analysis methods is to predict performance for a number of tasks, given
an existing interface to evaluate. A prime example of such methods is GOMS
(Goals, Operators, Methods and Selections) [CMN83]. Examples of methods
based on similar principles are CLG (Command Language Grammar) [Mor81]
and TAG (Task Action Grammar) [PG86, SG90].

These analysis methods are based on cognitive psychology theory. In this
theory people are seen as information processors, but it can be argued that
there is more to people than just entities shuffling information. In addition,
Greif has not been able to verify that GOMS models give reliable predictions
of actual performance in his experiments [Gre91]. Regardless of the arguments
against these methods, using this type of task analysis will not be useful to
reach the goal of this thesis. These methods can only be used to analyze exist-
ing systems for the purpose of evaluation, and it is unlikely that these methods
are able to support the design process other than through evaluation of specific
interface alternatives, which is not done until after the early design has been
created.

3.2.2 Traditional task modeling

A better name for most ‘task analysis’ methods would be ‘task modeling’ meth-
ods, because this describes their purpose and what they facilitate much better.
Almost always with such methods it is only an attempt to try and create a
description with a task model. Explicit techniques for some kind of analysis
beyond creating the description are very few.

Traditional task modeling methods usually consist of a variation on Hierar-
chical Task Analysis (HTA), where a hierarchy of tasks is created, with reaching
the top level goal as the main task to be accomplished. The leaf tasks contain
the actions to be carried out [PBACMF88]. Sometimes several levels of tasks
are described separately [Bas93], but this does not change the basic principle.

This method of task description originates from the first applications of task
analysis in the late forties and early fifties as part of the then evolving human
factors movement [But96]. HTA was very well suited to the type of work for

65

CHAPTER 3. HUMAN COMPUTER INTERACTION

which models needed to be created in that period, as the work was mostly
operator-based, i.e. an operator operates a machine according to a fixed set of
tasks and possible operations. Tasks were clear and unambiguous, and the leaf
actions consisted of simple operations on a machine, such as pulling a lever
or monitoring a gauge. A more modern but otherwise similar example can
be found in the Operator Function Model (OFM), which is used to describe
satellite monitoring jobs [Mit87].

Application of HTA to interactive systems design HTA and its derivatives
provide a simple yet powerful means to describe the goals, tasks, and actions
associated with operator work, but when they are used for the design of inter-
active systems additional requirements emerge. With the design of interactive
systems the purpose of the designer is not to describe the tasks in a task model,
but rather to use the task models to facilitate analysis. This means that task
modeling has changed from an end into a means. This is also the way in which
task modeling is used in the DIANA case. In addition to this changed use of
task modeling, two problems with HTA make these methods less suited for use
during the design of interactive systems.

The first problem has to do with context. HTA only describes tasks. Many
different ways have been found to describe tasks and their relations, but the
context of these tasks is almost always ignored. This was not a major prob-
lem using the traditional application of HTA, because operator tasks are al-
ways combined in leaf tasks, describing specific machine operations, and the
decisions and possible courses of action are described up front using explicit
rules. Finally, in the past operating the equipment was the goal of the work,
so all context was contained within the equipment or the rules applying to it.
In contrast, operating an interactive system is rarely a stand alone goal, more
often it is one of several means to reach another goal that is external to the in-
teractive system. This causes the context to become, at least partly, invisible to
the system: external documents, phone calls, people coming in, weather status,
all of them and more can have an effect on the tasks being carried out and on
the selected strategy, but this context is not explicitly represented in HTA.

The second problem has already been encountered and described in the
case study. HTA cannot deal well with ill-structured work. The reason for
this is obvious: ill-structured work is ill-structured precisely because no pro-
gram exists to describe it. If such a program did exist, the work would not
be ill-structured. HTA provides such a program, and hence cannot be used to
describe ill-structured work, even though it is suited to identify the tasks up to

66

3.2. SUPPORT FOR ANALYSIS

the point where they become ill-structured.
Both of these problems make HTA not very suited for supporting the anal-

ysis and design of interactive systems.
Another way of looking at this is to realize that the formal tasks and activ-

ities are not always the same as the actual activities [Sac95]. Sachs looks at an
organization through different lenses, for instance an ’organizational, explicit’
view and an ’activity-oriented, tacit’ view. Both of these are valuable and nec-
essary viewpoints, but methods such as task analysis often favor the organiza-
tional view over the activity-based view. In contrast, the activity-based view
often is much more relevant to ill-structured work than is the organizational
view.

3.2.3 Adding knowledge to task structures

The first problem noted in the previous section, i.e., not providing contextual
information, has been addressed by TKS (Task Knowledge Structures) [Joh92].
Use of TKS not only facilitates modeling of the tasks, but also modeling of the
knowledge people posses about these tasks. This includes knowledge of goals,
procedures, actions and objects. In addition to providing a method for analysis
and modeling of this information, TKS can also be used to identify how typical
each task is for the domain, and its importance for the overall goals.

TKS is commonly used as the foundation for an analysis method called KAT
(Knowledge Analysis of Tasks). This method uses TKS to store the knowledge
of people about their tasks. With KAT a number of techniques are employed,
e.g., observational techniques, concurrent and retrospective protocols, and fre-
quency counts, to collect the data for the TKS model. KAT then provides a
structured method for identifying TKS components, and for identifying the
representative, central, and generic properties of tasks.

While TKS and KAT address the first problem found with HTA methods,
they do not explicitly address how to deal with ill-structured work. This is
illustrated in the case study of a direct manipulation CAD system for use in
the jewelry business [Joh92, 187–192]. The task model for this system contains
a number of tasks which most likely contain ill-structured work, for example
‘decide overall shape’ and ‘decide position’. None of these tasks have been
further detailed in the task model. The case study description does not make
clear in what way support for these tasks is reflected in the CAD system. In
fact, it is likely that the user needs to make these decision based on knowledge
and esthetics, but whether the system can provide assistance with this, and if
so, how, remains unclear.

67

CHAPTER 3. HUMAN COMPUTER INTERACTION

A follow up system to KAT called ADEPT goes one step further by provid-
ing an integrated design environment [MPWJ92, WJK+93, WJ95]. The goal of
ADEPT is to bridge the gap between psychologically motivated modeling, and
implementation oriented modeling. An attempt is made with ADEPT to pro-
vide this bridge by integrating a number of different models within a single
design environment (see Figure 3.2). These models are based on a task model
and a user model, which are combined in several models, finally yielding the
‘concrete interface model’, which describes the resulting interface.

Initial Task
Model

application of
design rules

application of
design rules

refinement or
generation

of design
consequences

Designed Task
model

Concrete
interface model

Resultant
task model

Abstract
interface model

task analysis

design

User model

comparison

user group analysis

run−time execution

User Interface

Figure 3.2: ADEPT models and processes [WJK+93]

The approach taken in the ADEPT method has both its good and bad sides.
On the positive side it includes an explicit redesign of the task model composed
during analysis into a ‘designed task model’. This allows the designer to ex-
plore new solutions, instead of just improving an existing solution. The use of

68

3.2. SUPPORT FOR ANALYSIS

these models is also good in that it requires the designer to be explicit. This
facilitates communication and discussion about the design within the design
team. The ADEPT models require a lot of explicit detail right from the start,
however, and this can easily turn out to be a drawback; commonly there is lit-
tle detail known when the design process is started. Finally, it is not clear how
contextual information plays a role in ADEPT, and in fact the authors point out
that this should be an area of further study.

3.2.4 Task modeling for ill-structured work

The task modeling method described by Bots does have a specific represen-
tation for ill-structured work [Bot89]. Bots uses a simple HTA model called a
‘task structure’ to represent the tasks in this task model. A little bomb inside
a task box indicates that this task can be exploded, i.e., further detailed. For
structured work, the exploding is done using additional task structures, thus
creating a normal HTA hierarchy.

Some of the tasks need to be exploded further, but because they repre-
sent ill-structured work, this can not be done with additional task structures.
Bots then introduces another representation specifically for these ill-structured
tasks: decision structures. These structures get their name from the fact that in
Bots’ domain area, decision support systems, ill-structured tasks often involve
problem solving and decision making tasks. A decision structure contains
one or more decisions, and information elements related to these decisions.
These information elements can be used as input or output of decisions, or
both. A decision structure is an example of a model oriented description of an
ill-structured task. It defines what the problem is, but not how to work through
it.

Bots is specifically interested in supporting problem solving within decision
support systems. While his approach may not be directly applicable to the
design of interactive systems, it does show that, in the context of task analysis,
dealing explicitly with ill-structured work is possible. Bots’ method was used
in the case study described in Chapter 2.

Finally, Bots does not provide a means to add additional knowledge about
the context of tasks to the task model. The only contextual information which
can be added in his models is what kind of information is associated with par-
ticular decisions in the decision structures. No other contextual information,
e.g. goals, underlying assumptions, frequency of tasks, can be added to either
the task or decision structures.

69

CHAPTER 3. HUMAN COMPUTER INTERACTION

3.2.5 Other developments in interactive systems analysis

In addition to task analysis there are several other approaches towards analysis
of interactive systems. These approaches have in common that they emphasize
the strong relationship between work and its environment. Kyng argues that
new representations are needed to take the environment into account [Kyn95].
Unfortunately he does not provide such a representation himself, and it can
be argued that this is not easily possible either [Ban95]. Draper provides a
argument for sometimes using artifacts instead of analyzing tasks, but remains
too brief to build upon [Dra93]. Bannon and Bødker also argue that artifacts
are important, and should be studied while in use: “artifacts are crystallized
knowledge” [BB91]. Fischer introduces explicit representation of context and
intent, but does so for a domain-oriented design environment [FNO95].

The three approaches discussed in the remainder of the section also do not
provide ready for use representations. What they do offer are approaches in
which the context of the work gets explicit recognition. As such they might
prove to be useful with regard to the central research questions in this thesis.

Ethnography Ethnography in and by itself is not a new approach. Developed
within anthropology, it refers both to the process of conducting field studies
and to the written text produced as a result of these studies. The application
of ethnography to HCI did not start until the eighties. It began primarily as
a means to focus on the social and cooperative aspects of computing, and to
counter the laboratory experiments on which much theory was based until
then [Blo95].

Indeed the primary asset of ethnography for HCI is its broader focus on
the socially situated nature of HCI. This social context of the work people do
can be particularly valuable when designing CSCW systems. One of the major
drawbacks of ethnographic studies is the long period of time they tend to take.
It has been proposed to make much shorter observations according to the same
principles to get at least the most important social aspects into focus [HKRA95].

A second drawback of using ethnography for HCI is that the standard re-
porting method for ethnography consists of written text. This representation is
often not suited for the dynamics of the workplace, in particular when design
of interactive systems is considered. In effect, ethnography is aimed primarily
at analysis, although work is underway to bridge the gap between ethnogra-
phy and design [BD96].

Ethnography provides a very broad perspective on work, in particular from
a social perspective, and hence will mostly guide the design of social interac-

70

3.2. SUPPORT FOR ANALYSIS

tion. It is argued that the experience gained from an ethnographic study can
not easily be made explicit in a condensed form. While ethnographic stud-
ies will add insight, they do not provide specific ways to describe contextual
knowledge or ill-structured work.

Contextual Inquiry Contextual inquiry is a method for collecting informa-
tion during analysis in a structured way [HB96]. It was initially developed by
Digital Equipment Corporation’s usability team as a means to come to a better
understanding of how users work. The primary means of collecting informa-
tion in contextual inquiry is the interview. These interviews are structured
according to an apprenticeship relationship between the designer and the user.
One of the premises of contextual inquiry is that understanding work at the
day to day level of detail can only be achieved through observation. Even the
users themselves can not properly describe what they normally do, because
the details of their work become second nature to them, and thus ‘invisible’
because they are not consciously carried out.

The apprenticeship model of the interviews uncovers many of these de-
tails. It allows the designer to observe the user and to engage in discussion
about observations and interpretations. Retrospective accounts are also used
to uncover information which cannot be uncovered during two or three hours
of observation. With a retrospective account the user leads the designer step
by step through some event, using artifacts as a means to guide the explana-
tion. This technique is identical to the way interviews were conducted in the
I-DIANA case study (Section 2.3.2).

Contextual inquiry also provides a way to interpret and model the data col-
lected during the interviews. Contextual inquiry uses five diagrams to model
work:

Context model The context model shows the environment of the user in terms
of organizational culture, policy, and procedures. It serves as a check for
the acceptance of particular design solutions.

Physical model The physical model shows the physical layout of the work. It
is used to model movement between spaces and different kinds of com-
munication.

Flow model Flow models show people’s responsibilities, communication, and
coordination. This model can be used to uncover the different roles asso-
ciated with the work.

71

CHAPTER 3. HUMAN COMPUTER INTERACTION

Sequence model Sequence models show which sequence of action is needed
to carry out a given task. They are similar to flow charting or task models.

Artifact model Finally, artifact models describe the artifacts used in the work,
including their structure, usage, and intent.

Together these five types of models give a complete description of the work.
The models and interviews provide a very large amount of information, so
contextual inquiry also supports a way to condense the information. Affinity
diagrams play a key role in this process. In these diagrams related notes from
the interviews are clustered together. This technique allows a structure to sur-
face from the collected data, instead of imposing one from the start. For each
type of model a single consolidated model is created based on the individual
models of that type that were created based on collected customer data. These
consolidated models describe current work practice and can serve as a starting
point for redesign.

In fact, Contextual Inquiry was later extended to become Contextual De-
sign [BH98]. Amongst other things a new model was introduced, the User
Environment Design, which is similar in several ways to WONDER described in
Chapter 4.

Activity theory Activity theory is a theory of people and the work they do
[Nar96a, Rae91]. It has its roots in Soviet psychology originating in the 1920s.
The object of activity theory is to understand the unity of consciousness and ac-
tivity. Activity theorists argue that consciousness is located in everyday prac-
tice, i.e., “you are what you do”. Activity theory aims to understand the inter-
penetration of the individual, other people, and artifacts in everyday activity.
It tries to evoke understanding by providing a set of perspectives on human
activity, and a set of concepts for understanding that activity.

This very brief description already makes clear that activity theory is not
a cut and dried theory, ready to be applied. Instead it is more a philosophical
framework which can be used to come to terms with the activities we humans
carry out. This also provides the link with interaction design. For instance,
Greif notes that “artifact design is essentially activity design” [Gre91]. Activity
theory provides a very basic understanding of this strong symbiosis between
the artifacts we use, the activities we carry out with them, and the way this
makes us perceive things. Due to this strong foundation, activity theory pro-
ponents claim that it has the best chance of becoming a good theoretical basis

72

3.3. SUPPORT FOR CONCEPTUAL DESIGN

underlying most of the field of HCI, instead of other theories such as cognitive
psychology and situated action [Nar96b].

In the context of this thesis activity theory is not directly applicable. In its
current state it does not provide enough guidance to help answer the research
questions directly. Still, activity theory is interesting for two reasons. First,
it affirms the trend towards paying more and more attention to work context
when designing interactive systems. Second, it provides a strong focus on the
symbiosis between artifacts, activities, and people. Both of these issues can
provide valuable, although indirect, input when answering the research ques-
tions presented in this thesis.

3.2.6 Discussion

None of the task modeling methods described in this section support both of
these characteristics. TKS does provide for contextual knowledge to be added
to the task model, while Bots’ decision structures provide an explicit descrip-
tion of ill-structured work.

Other developments in analysis support, such as ethnography, contextual
inquiry, and activity theory, do not provide improvement over task modeling
in this sense. These developments all have in common that they strongly focus
on finding and describing contextual information, thus addressing one of the
two important characteristics for good task modeling. None of these develop-
ments seems to acknowledge explicitly the existence of ill-structured work. At
any rate, they do not provide any means to deal with it within their methods.

In summary, two important characteristics for a task modeling method for
interactive systems development are:

• the task model allows contextual knowledge to be added;

• the task model can describe ill-structured work explicitly.

3.3 Support for conceptual design

The I-DIANA case study shows that support for conceptual design is both im-
portant, and lacking in HCI textbooks. Design theory states that design tools
are needed to tackle complex design problems [Jon92]. Use of design tools can
have negative side effects, in particular because it can easily limit the design
space under consideration, or cause details not supported by the design tool

73

CHAPTER 3. HUMAN COMPUTER INTERACTION

to be overlooked [Law90]. No design tools for conceptual design were found
in the HCI textbooks used during the I-DIANA case study. The search for such
design tools is continued in this section, first by examining how several design
tools, either generic or aimed at architecture, can support the design process.
Subsequently several design tools for conceptual design of interactive systems
are discussed. Finally some requirements based on a real world study of de-
signers are presented.

3.3.1 Examples of design tools in general

Jones provides an overview of design tools [Jon92]. Some of these design tools
are very simple and straightforward; at first sight we might not even consider
them to be design tools. Examples include literature searches, interviewing
users, and brainstorming. All of these simple activities can be considered tools,
as they help to structure and guide the design process. Jones also lists sev-
eral more complicated and formalized design tools. One such tool is Alexan-
der’s method of determining components in a design [Ale64]. This design
tool provides a method for finding the right physical components of a phys-
ical structure such that each component can be altered independently to suit
future changes in the environment. The method consists of a number of well
defined steps in conjunction with a specific representation.

Architecture Many parallels can be found between architectural design and
interactive systems design. Some of the design tools used by architects show
how similar techniques could be useful for design of interactive systems.

The use of design patterns is an example of an architectural design tool
[AIS77, Ale79]. Design patterns aid in the design of coherent architectural
structures from the very coarse level of city planning all the way down to the
details on doors and windows. The design tool consists of a set of patterns,
each of which describes the relations between the common architectural prob-
lems, its context, and a possible solution [Arg80]. Each pattern can be thought
of as distilled design knowledge. Using these patterns to guide design means
reusing all this design knowledge embedded in the patterns. This allows more
informed design decisions to be made, and more alternatives to be considered.
The application of design patterns for interactive system design is currently be-
ing investigated [Eri]. The software engineering community is already actively
using this design tool [GHJV94].

Architects also design incrementally, using several layers to add more and

74

3.3. SUPPORT FOR CONCEPTUAL DESIGN

more detail [Won93]. They start out by making several rough sketches. By
adding layers with more detail they can easily explore several options while
still working on the basis of the original sketches. When one avenue of ex-
ploration does not work out, each layer can easily be removed. This use of
layering as a design tool has two advantages. One, it always keeps the origi-
nal rough sketches available. This keeps the design from deviating too much
from the original plan. Two, it encourages exploration of different alternatives
at several levels of detail, thus allowing the designer to try a wider variety of
design solutions. Wong proposes that similar techniques be made available for
interaction design.

3.3.2 Examples of design tools for interactive systems

There are only a few design tools which address explicitly the conceptual de-
sign of an interactive system. Three of these design tools will be discussed. The
discussion will focus in particular on the target domain, the requirements on
analysis, and on the way in which the conceptual model is described.

Task oriented approach Seaton and Stewart have described a task oriented
approach [SS92]. They create their conceptual design using tasks which they
have found during analysis. Only a few levels of tasks are included in this task
model. The highest level consists of Departmental Tasks, which represent the
main mission of the department. The next level of tasks are the Primary Tasks,
which represent the business objectives of the department. Primary Tasks are
composed of Secondary Tasks, while each Secondary Task is composed of one
or more subtasks. The whole hierarchy is depicted in Figure 3.3. Subtasks are
assigned to a role, and associated with specific documents or screens or both.

So far this looks like just another HTA derivative with a fixed number of
levels and some additional knowledge attached to the leaf tasks. What makes
this approach interesting is the philosophy of the authors that a system design
based on task analysis will not be very usable. They argue that task analysis
is effective for specifying functional requirements, but that it does not pay at-
tention to usability. They also stress the danger of simply re-implementing the
existing situation, instead of really creating a new design.

To counter these problems the authors use strong user involvement and
very early prototyping. As soon as possible a prototype is created for one of
the primary tasks, and implemented in the work environment. Step by step
additional functionality is added to the prototype, partly based on the task

75

CHAPTER 3. HUMAN COMPUTER INTERACTION

Departemental
task

Primary
task

Secondary
task

Sub−task

Documents

Screens

Documents

Role Assigned

Screens

Figure 3.3: Seaton and Stewart’s task hierarchy

model, and partly on user feedback. By using this mix of user involvement
and structuring through the task model the authors claim to get a more usable
and buildable system.

This proposed way of working is strikingly similar to that of film making.
Heckel describes the process of animation film making at the Disney studios
[Hec91]. This process starts out with a rough storyboard which outlines the
main themes of the film, cf. the rough task hierarchy. From this storyboard a
first, very rough, film is made, cf. the initial prototype. This rough prototype
film is then gradually enhanced. Scenes are drawn in more detail, music is
added, etc. Each addition is placed in the film prototype immediately, so that it
can be viewed in context of the film as a whole. A similar step-wise refinement
is proposed by Seaton and Stewart.

Although not explicitly acknowledged, this method appears to be aimed
at the business domain. This focus can be inferred from the examples of the
authors and from their comments in general. It is particularly visible in the
task model, for instance because of the term ‘departmental task’.

The method poses no specific requirements for analysis. Seaton and Stewart
do not believe in creating a large and complete task model, but for reasons un-
related to ill-structured tasks. They argue that a detailed task model will most

76

3.3. SUPPORT FOR CONCEPTUAL DESIGN

likely reflect current work practice instead of describing a new and improved
design. A coarse task model is used instead to define structure, and prototyping
is used in close cooperation with the users to create a design within the bound-
aries of the task model. Thus the support for ill-structured tasks is implicitly
added.

Seaton and Stewart only provide a very sketchy description of a conceptual
model. The task model provides a good description of the structure, but is very
coarse, while the detail is implemented directly into prototypes, documents
and screens, each of which goes beyond mere conceptual design.

MUSE/EXPOSE A different approach is taken in MUSE (Method for User In-
terface Engineering) [GVQD93]. The MUSE method tries to comprise all of the
development process of a user interface, but it is mainly focused on design and
implementation. MUSE is contrasted with the approach of Seaton and Stew-
art in that it does try to create a user interface through a structured approach.
To ensure usability of the final result, MUSE is guided strongly by software
ergonomic principles such as those detailed in the DIN NORM 66234/8 on
computer dialogues [DIN87]. A tool called EXPOSE is available to work more
easily according to the MUSE method [Gor95].

Four phases in the development process are recognized in MUSE: concep-
tualization, structuring, concretion, and realization. The concretion and real-
ization phases are not discussed here, because they are not aimed at the early,
conceptual, design. The conceptual phase contains the analysis of the current
work system and the subsequent design of the future work system. This analy-
sis does include aspects of the work environment, work distribution, and com-
munication needs. The result of this conceptual phase consists of tasks, work-
flow, and an initial tool interface. These results are expressed in an informal
way; with several diagrams and techniques for expressing these results being
loosely suggested.

The structuring phase builds on the results of the conceptual phase by se-
lecting one of four abstract dialog forms: data request, multiple choice, com-
mand request, and object manipulation. The dialog structure is then defined
by sequencing these abstract dialog forms according to the tasks and workflow
found during conceptualization.

The conceptual model is defined by a number of different concepts, but the
main structure of the model is provided by a specification of tasks. The concep-
tual design is created by selecting one of the objects found during analysis, its
related task, taken from the detailed task hierarchy, and the users who have to

77

CHAPTER 3. HUMAN COMPUTER INTERACTION

perform the task, as specified by their roles. A strong point of EXPOSE is that it
contains domain specific advice in addition to generic ergonomic advice. This
advice consists of suggestions for commonly used objects in the domain, of
suitable methods for these objects, and of information on the different roles.

The ergonomic advice based on the role description can be used to pro-
vide suggestions for additional functionality to support the selected task, for
instance, if a large degree of freedom in sequencing the subtasks is needed to
carry out a task, then some kind of control function needs to be designed to
facilitate this. Suggestions for meta-functions, e.g. providing help, and adapt-
ing functions, e.g. changing fonts or moving windows, can be suggested in a
similar way. These suggested functions are then further evaluated based on
ergonomic principles present in EXPOSE.

MUSE and EXPOSE are aimed at the business domain. This has the ad-
vantage of being able to provide specific advice for the domain, but it has the
disadvantage of being less flexible for other domains. The business domain
focus, i.e. a focus on transaction processing and form-based interfaces, is par-
ticularly clear in the structuring phase.

The main requirement for working with EXPOSE is the existence of a de-
tailed task model. This model is explicitly required, and plays a central role
in the remainder of the conceptual design activities. The detail of this model
leaves little room for the support of ill-structured tasks, although some flexibil-
ity can be found in specifying the control functions, for instance by not speci-
fying a particular sequence for subtasks.

Finally, EXPOSE’s description of the conceptual model is quite rigid, and
does not allow for much ambiguity or vagueness. The model is created by
using software tools which may make it easier to work with, and more un-
derstandable for team members from different disciplines. The fact that EX-
POSE requires a detailed task model up front also makes incremental design
less needed, thus alleviating some of the need for ambiguity in the conceptual
design model.

UIDE The User Interface Design Environment (UIDE) provides a different ap-
proach to designing and implementing an interactive system [FKKM91]. It
is one of a number of similar systems, all of which are aimed at providing a
single description of an interactive system which can be used to generate dif-
ferent interfaces for the system; an example of a system with a similar goal is
HUMANOID [SLN93]. The main idea behind UIDE is that a single repository
contains all information needed to describe the interactive system. Different

78

3.3. SUPPORT FOR CONCEPTUAL DESIGN

modules operate on this repository, facilitating different design and implemen-
tation tools, for instance, the information in the repository can be used to gen-
erate context sensitive help [SF90, dG92, MSN94].

Foley and Wallace proposed a four layered view on interactive systems well
before the UIDE project was started [FW74]. This view consists of a conceptual,
semantic, syntactic, and lexical layer. Each of these layers describes a dif-

ferent aspect of an interactive system, while together they provide a complete
description of the system. Use of this layering allows the designer to shift at-
tention between different aspects of the system by selecting different layers. In
this sense these four layers resemble the use of layers in architectural design. A
successful use of layering during design is demonstrated by the MOVE project
[BHvdMS93].

The conceptual layer describes the interactive system at an abstract level,
making it quite suited for conceptual design. Foley sees the conceptual layer as
the user’s model of the application [FvDea82, p. 82]. This layer typically pro-
vides definitions of objects, properties of objects, relationships between objects,
and operations on objects. These definitions are reflected in UIDE’s database
structure, shown in Figure 3.4.

Preconditions

Postconditions

ParametersActions

Objects Attributes Attribute types

Figure 3.4: UIDE database structure [FKKM91]

UIDE provides us with two interesting points for discussion: an explicit way

79

CHAPTER 3. HUMAN COMPUTER INTERACTION

to express the conceptual design, and the usability problems of UIDE.
The conceptual design in UIDE is represented as a collection of objects and

associated functions. This representation is independent of a user interface:
no particular presentation has been selected for an object, and functions can
still be assigned to menu items, buttons, or something else. This makes the
representation useful in terms of the second research question: no particular
user interface elements are needed to represent it.

UIDE has some major usability problems, however, so this representation
might not work as well as seems at first glance. The problems make UIDE,
and similar systems, extremely hard to use by designers for real world de-
sign problems. Most of the problems are caused by its underlying philosophy,
which causes the conceptual model to be so rigidly defined. This does not en-
courage gradual growth; everything needs to be specified precise right from
the start, leaving no room for doubt or vagueness during design. This does
not facilitate explorative design early on, even though this is very important in
the early stage of design. Control over the mappings of the conceptual model
to a graphical user interface, and over the appearance of the user interface it-
self, are also not very well developed, but this is a problem with the particular
implementation of UIDE, not because of the philosophy behind it.

UIDE is not associated with a specific target application domain, although
most of its examples are small direct manipulation applications. Use of UIDE
also does not pose specific requirements on analysis, although good knowl-
edge of objects and functions is needed to create the conceptual model, and
thus implicitly requires knowledge of contextual information and a task hier-
archy.

UIDE’s representation of a conceptual model is very rigidly defined, and
does not support any ambiguity or inconsistency. While this model is very
precise and explicit, it does not facilitate incremental design, comments on the
design, potential alternatives, etc. All of these will have to be handled out-
side of the conceptual design representation, potentially leading to loss of this
information.

3.3.3 Representation of interaction as a design tool

Design representations can provide a very powerful tool for design, because
their use allows the designer to focus on specific parts of the system while still
keeping an overview of all of the design, and because these representations en-
courage easy exploration of possible solutions [Cro89, Jon92]. Tetzlaff stresses
two objectives for a design representation for interaction design [TM91]. First,

80

3.3. SUPPORT FOR CONCEPTUAL DESIGN

it should model the procedural richness of the environment, task, or artifact
to make sure that the solution will meet the user’s needs. Second, it should
abstract the distinctions and similarities pertinent to the development of an
effective, conceptually coherent, and usable interface.

There are some inherent problems with design representations [Law90].
For instance, the designer needs to be able to interpret correctly the representa-
tions in terms of what the final product will look like. In addition, each repre-
sentation has an inherent focus and bias; using only one representation makes
it easy to dismiss other points of view and their associated constraints and
problems. Another problem is that it is often easy to conjure up a compelling
image in the design representation, while not paying attention to objections
and concerns which might arise as a result later in the development process,
for instance, by designing a user interface that requires too much computation
to be feasible. These problems seem to be inherent to the use of representa-
tions for design. Not much can be done to the representations to alleviate the
problems.

Comparing interaction design representations An analysis of six interaction
design representations used in interactive media projects reveals some inter-
esting information [Kol]. The following representations were used in the cases
under study: technical reports, flow charts, state transition diagrams, linear
demos, interactive demos, and hardware demos. The study reveals that none
of these representations stands on its own; each one is embedded in the whole
development process. Furthermore, once one representations builds on a pre-
vious one, the previous representation looses value, and moves into the back-
ground.

The study found several characteristics to be of particular importance:

Revisibility The iterative design process calls for continuous revisions of rep-
resentations. Some representations make it very hard to track revisions,
while others allow small revision easily, but not structural revisions.

Incompleteness It is almost impossible to create a complete representation.
Instead each representation appears to focus on one particular aspect of
the design.

Roughness It is hard to strike the right balance between keeping a representa-
tion rough so that people will assume it is open to changes and sugges-
tions, and smooth so that people will experience the representation well
enough.

81

CHAPTER 3. HUMAN COMPUTER INTERACTION

Accuracy This is not an issue early on in the design process, but it does become
more important to be able to verify or assess the accuracy of descriptions
once the design progresses towards implementation.

Interpretability This means that representations made at one level of the de-
sign process can not be interpreted by a next level. This in turn implies
that a manual interpretation or translation needs to be done later in the
process, perhaps several times in sequence. Furthermore, this aspect also
inhibits going back to previous design representations.

It is unclear to what extend these characteristics hold for conceptual design
representations, though. The representations included in this study all focused
on a specific implementation detail such as the visual interface, or the inter-
actions between user and interface. For a conceptual design several of these
characteristics are less important.

UAN Representations for interaction design currently focus primarily on the
physical interaction with the user interface. State transition diagrams and
event handlers [Gre86] are early examples of such representations. A more
current, but similar, representation is User Action Notation (UAN) [HH93]. The
goal behind UAN is to describe in detail the interactions of the user with the in-
terface. According to the authors,

“UAN is intended to be written by someone designing the interac-
tion component of an interface, and to be read by all developers,
in particular those designing and implementing the user interface
software”

UAN does provide a very fine level of detail, which is very useful given
its goal. It allows the designer to specify the interactions very precisely, not
leaving any guesswork to the programmer.

UAN describes the interaction for each task both with user actions and the
corresponding interface feedback and interface state changes. An example of
UAN notation is shown in Figure 3.5. In this example the cursor is moved to
a specific file icon, and the mouse button is depressed. In response, the icon
is highlighted, and the corresponding file is selected. To finish the task, the
mouse button is released.

From this example it is clear that UAN provides a very low level descrip-
tion of the interactions of the user with the interface. UAN does provide some
capabilities to create higher level descriptions, for instance by summarizing all

82

3.3. SUPPORT FOR CONCEPTUAL DESIGN

Task: select file
USER ACTIONS INTERFACE FEEDBACK INTERFACE STATE
˜[file icon’-!] Mv file icon’! selected = file
Mˆ

Figure 3.5: UAN example—select file [HH93, p. 167]

the interactions from Figure 3.5 into a single select file construct. When
describing these higher level tasks the system feedback is not included, as this
is guided by the lower level interactions.

Whether interaction representations such as UAN can help when address-
ing the research questions of this thesis is doubtful; UAN does not appear to be
useful for supporting conceptual design for several reasons. For instance, UAN
only partly addresses one of the two objectives by Tetzlaff mentioned above: it
only provides a rudimentary mechanism for abstraction, which really is noth-
ing more than summarizing interactions in a hierarchical fashion. This only
provides a partial abstraction. For instance, feedback is not a part of this ab-
straction because it is generated by lower-level interactions. More importantly,
UAN does not provide for any modeling of the richness of the environment and
its artifacts, i.e. the work context.

UAN also resembles HTA methods in several ways, such as using a hier-
archy of actions, and a hierarchical task structure which becomes more and
more detailed. Despite this resemblance, UAN does not satisfy the two major
requirements for task analysis methods discussed in Section 3.2: modeling of
work context, and providing support for ill-structured work.

Taken together, these problems make it clear that using UAN for support of
the conceptual design is not a viable alternative. Other methods for represent-
ing interaction suffer from the same problems, because they too are grounded
in the low level interactions between the user and the interface. Similar argu-
ments can be brought against their use for conceptual design.

3.3.4 Real world requirements for design support

A study amongst real world interaction designers has revealed a number of re-
quirements on design support tools [RMK87]. Two types of development with
two associated types of tools are found in this study. The first development

83

CHAPTER 3. HUMAN COMPUTER INTERACTION

model is incremental; the design continuously grows from a small core into a
full-fledged design. For this type of development there is a need for rich and
modular environment, which can support the very first stages of prototyping
up to the final system as it will be delivered to its users. The second type of de-
velopment is phased development, where the steps from one part of the design
process onto the next may be more radical. The authors claim that a simulation
tool for simulating behavior of the system at subsequent phases of the devel-
opment process is quite important here, because it allows the designer to get
things right at a time when the design is most flexible.

Furthermore the analysis found a distinction between two different classes
of tools. For well-specified problems a structured tool that guides the designer
toward the best implementation of chosen interaction techniques may be best.
For ill-structured problems, however, an integrated, relatively unconstrained
environment where interface and functionality may evolve together will be
best.

The results of a study into the use of HCI techniques in a real-world project
also provide interesting insights [BSMH95]. Several lessons regarding the prac-
tical application of HCI theory are presented:

• make modeling less of a ’black art’; understanding the process is one step,
but being able to apply it is another;

• provide positive as well as negative design critiques; design methods
should also reinforce good design decisions, and not just focus on prob-
lems and broken or bad parts of the interface. This does not only yield a
more balanced design tool, but also provides a better social grounding;

• sharing representations: context and participation; when sharing repre-
sentations, it is also important to include or make otherwise available the
context of those representations, especially if the representation is terse
such as in diagrams;

• concretizing theoretical principles; abstract notions and diagrams of a de-
sign are often not enough, and some concrete examples such as sketches
can help understanding and reflection;

• design culture and design formalisms; bringing more formal methods
into a culture that is not used to them can pose problems of acceptance,
and an active effort needs to be put in two-way communication about
their use. Also, adaptation to a specific culture may be needed in a spe-
cific design job.

84

3.3. SUPPORT FOR CONCEPTUAL DESIGN

Karat and Bennet also see several useful techniques for supporting design
while contributing and maintaining perspective on the user [KB91]. Some of
the examples they give are:

1. tabular formats for representing system objectives.
2. abstract statements of a guiding vision for design (e.g. style guidelines).
3. early design prototypes as a basis for design iteration.
4. focus on the objects important to the user, and the actions on them.
5. scenarios of use.
They also pose several requirements for such a technique:

• fit into existing design activities;

• display obvious value for designers;

• emphasize early design, but results are useful throughout the design pro-
cess.

3.3.5 Discussion

If one conclusion can be reached, then it is that support for conceptual design
is far from complete. Each of the example methods presented in this section
has its own set of problems.

The choice of a target domain appears not to have significant consequences,
although the business domain allows a much more rigid description of the
conceptual mode, because there will be less ill-structured tasks. This is caused
by an implicit assumption that these systems will be transaction or form based.

Both EXPOSE and UIDE pose strong requirements on the information col-
lected during analysis. These requirements are reflected in the rigidness of the
representations of the conceptual model in both methods. In making these as-
sumptions on the information available from analysis, the developers of both
methods have pushed the conceptual design activity back into the analysis ac-
tivity. This has the very real danger that no conceptual design will be done at
all, for instance because the tasks found during analysis are used directly as
the conceptual model for the new design. In addition, it breaks the important
iterative and symbiotic relation between analysis and design as described in
Section 3.1.1.

Seaton and Stewart are much more flexible in their requirements for their
method, but their conceptual model is not extensive enough. By going to pro-
totyping quickly they make a whole range of the design implicit in their pro-
totypes. The model they have, i.e. the task models, only defines the structure

85

CHAPTER 3. HUMAN COMPUTER INTERACTION

of the application, but nothing else. All other information will be implicitly
encoded in the prototypes. While this works around the problems with ill-
structured tasks, it also makes it much harder to evaluate the design, and work
on it iteratively.

Finally, the conceptual models of all methods contain the same kind of in-
gredients, i.e. objects and functions, in some way. It is clear that both play an
important role in defining the conceptual design in some way.

The more general discussion of design tools does not provide much addi-
tional possibilities for supporting conceptual design. While it contains some
good generic hints on design tools, it does not provide much guidance for the
design of interaction. It gives some good criteria for evaluating design tools,
but nothing more. Similarly the discussion of design representations for in-
teraction design, with UAN as a good representation, does not provide much
material to work with. At least it makes clear that existing representations
for interaction design do not help with supporting conceptual design, because
they are too detailed, too rigid, and too much oriented towards the user inter-
face.

3.4 Multi-disciplinary design teams

Design of interactive systems is inherently an interdisciplinary project [Rhe95a,
for example]. Many different skills are needed to develop an interactive sys-
tem. This large number of skills implies that the development of an interactive
system has to be a team effort. Some information on potential problems with
such multi-disciplinary teams, and an exploration of the different roles present
in such teams, are presented in this section.

3.4.1 Disciplines and their cultures

Kim explains clearly why interdisciplinary work can be very hard, and what
can be done to alleviate these problems [Kim90]. He argues that different disci-
plines are like different cultures; one has to learn the language, traditions, and
values of a discipline before it can be appreciated.

Kim argues that disciplines are formed as soon as people meet recurring
situations. To survive these situations people give priorities to different things,
based on their needs. These priorities become invisible when a discipline be-
comes a way of life, however, and that is where the trouble starts. When the

86

3.4. MULTI-DISCIPLINARY DESIGN TEAMS

priorities are questioned or threatened, for instance by somebody in a differ-
ent discipline, who has different implicit priorities, people perceive this as a
threat, because when the priorities of their discipline are threatened, survival
of the discipline is also threatened. Since people usually identify themselves
with their discipline, the threats are perceived personally. Talking about these
issues would help to alleviate this problem by making priorities of a discipline
explicit, but because the priorities have become invisible, it seems there is noth-
ing to talk about.

The solution obviously is to become aware of this process, to understand
your own and other disciplines’ approaches, and to work from there. Kim pro-
vides a lot of concrete steps towards becoming an interdisciplinary person, and
for bridging the gaps between disciplines based on this assumption. Karat de-
scribes a development process where the differences between disciplines were
effectively dealt with [KB91]. In this development process a ‘war room’ was
used for all of the design activities. In this room, each wall signified a particular
aspect of the design process, and all information related to an aspect was stuck
on the relevant wall. This made the progressing design very tangible for all the
design team members, and greatly contributed to overcoming differences be-
tween different cultures. In addition, the team is much more productive when
working in this manner [TCKO00].

3.4.2 The constituents of a design team

Who ends up in a design team is often determined by what people are avail-
able, the budget of the project, the skills needed, etc. Some suggestions for the
different people who can be part of the design team and the roles they can take
are explored in this section.

The team leader Based on experience with a number of educational software
design projects, van der Mast suggests a manager for the whole project who
is not an ‘independent outsider’ [vdM95a, vdM95b]. He states the manager
should be able to make quality evaluations personally, and this is only possible
with a suitable background of both the development process, and of the do-
main being developed for. Van der Mast compares this manager role with that
of the director during film making.

This view is reinforced by Fred Brooks. He proposes the ‘surgical team’ ap-
proach where a team is fashioned after a surgical team [FPB95]. This approach
recognizes that one man in the team is really doing the bulk of the work, and

87

CHAPTER 3. HUMAN COMPUTER INTERACTION

all the others on the team are there to allow him to do so. In a real surgical
team, the surgeon is the one leading and primarily carrying out an operation.
The rest of the team make this possible by providing the right instruments at
the right team, making sure the patient remains stable, etc.

Team members Depending on the needs of the project many different peo-
ple can be involved in the design of an interactive system. In any case van
der Mast suggests using skilled professionals for all tasks [vdM95a, vdM95b].
Although new tools may exist which can achieve similar results to those of
a professional, professionals still are recommended. As an example consider
the use of a screen painter for prototyping. While most people would be able
to operate the screen painter, only a professional will achieve a satisfying and
professional result.

Tognazzini thinks three roles in particular are very important in the design
team: an HCI expert, a graphics designer, and a writer [Tog92].

The HCI expert is a logical choice, although it is not entirely clear what the
tasks of this role are according to Tognazzini. Given his background,
however, the HCI expert should be able to use the data collected during
the analysis phase, and to make informed design decisions based upon
them.

The graphical designer is chosen by Tognazzini because of his capabilities as
a communicator, in particular for visual communication with the user
with a minimum of expression.

The writer of manuals is an unexpected selection. Tognazzini argues that the
writer is the one who has to explain the system to the users in writing.
This gives him the best opportunity to gauge whether a specific part of
the system is going to be very hard to understand, or whether a part of
the system will cause confusion. The length of prose to describe a feature,
and the number of exceptions to be noted in the text provide good clues
for this.

3.4.3 Discussion

The explanation of Kim was also observed during the I-DIANA case study. The
problems that were encountered with the descriptions of the conceptual de-
sign (See Section 2.5.2), are an illustration of the differences in priorities and

88

3.5. CONCLUSIONS AND REQUIREMENTS

values between cultures. The textual description did not come easy to each
team member; cultural differences also became apparent, for example, there
were heated discussions between the user interface team member and the soft-
ware engineer over the approach to follow and the potential impact of technical
problems. In hindsight both team members were trying to defend their values
and priorities, just as Kim describes.

The issues surrounding the team members are much less clear. Van der
Mast’s reasoning for an informed team leader seems logical. His analogy with
the position of director in film making is valid. Tognazzini’s most important
roles in the design team are much less clear, and open to discussion. Impor-
tance does not seem to be a good criterion anyway, as it depends so much on
one’s point of view. His choice for the manual writer is surprising yet apt, but
his choice for the graphic designer is less convincing, and seems to indicate a
specific preference for graphically rich interfaces. In the context of this thesis
this is not really relevant, as it does not focus on the early conceptual design.

What really is most surprising is how little has been said about the members
of the design team. Most methods, for instance, do not indicate what role or
roles in the design team they would like to support. Other methods silently
assume ‘a designer’ or something similarly unspecified. Hardly anything has
been published on the design team, and how it can be supported best.

3.5 Conclusions and requirements

The preceding sections provide an overview of the literature on HCI, and in
particular on analysis and conceptual design. Taken together with the DIANA
case described in Chapter 2, it is now clear that there are still many open issues
that need to be addressed to get better support for the conceptual design of
interactive systems. A number of these issues are described below.

It should be clear by now that what we are really looking for is a design
tool. This is the main question underlying the research questions posed in
Section 1.3. This design ‘tool’ need not be a piece of software; tool is used here
in a more generic way. We are looking for something that provides support for
the design of interactive systems facilitating ill-structured work. Starting with
the open issues, it is explored what requirements there are for such a design
tool.

89

CHAPTER 3. HUMAN COMPUTER INTERACTION

3.5.1 The underlying paradigm

First, however, let’s briefly revisit the paradigm mentioned in Section 1.3 on
page 15. The literature cited in Section 3.1.2 confirms this paradigm, as can
be seen with the quote from John Seely Brown and the levels of interaction
as described by Buxton. Newman and Lamming also stress this, pointing out
that the crucial property of an interactive system is that is provides support for
human activity.

A similar conclusion was drawn in Section 2.5.2 in the overall evaluation
on page 54. There it is concluded that a bad or unusable system can only be
improved marginally by a good user interface.

Finally, Section 3.3.3 also supports the paradigm, although implicitly. By
showing that a detailed description does not provide enough abstraction to
discuss the conceptual design of an interactive system, it makes it clear that a
view is needed that is more than just the sum of the individual user interface
elements.

3.5.2 Open issues

Design tools Section 3.3.5 makes it clear that there is no design tool which
supports the conceptual design well. The balance between rigidness and flex-
ibility in particular seems to be a hard combination to make. This is discussed
in more detail below on page 91.

The general discussion of design tools in Section 3.3.1 is useful in that it
provides stimulating food for thought. It can not help directly in solving the
specific problems associated with the conceptual design of interactive systems.
At best this discussion provides directions to look in, and generic hints for de-
signing design tools. This is also provided by the study into real-world design
requirements presented on page 84.

Dealing with context Section 3.2.6 shows that there are some tools or theories
that incorporate contextual information. Recent theories on analysis in particu-
lar all seem to focus on using contextual information in some way. This shows
that it is important to include contextual information, but what is that exactly.
This is less clear. In general it is information about the context of someone’s
work, but how this can be described, or which aspects are particularly impor-
tant, remains unclear. Activity theory tries to answer these questions, but at
this time it is not quite practical enough to base a whole design tool on. The
issue is what contextual information to include in which way.

90

3.5. CONCLUSIONS AND REQUIREMENTS

Dealing with ill-structured work Section 3.2.4 describes a task modeling ap-
proach which takes ill-structured work explicitly into account. This approach
is not aimed at the design of interactive systems, and in fact it is seen more
as an analysis tool for business processes than anything else. The issue here is
how this explicit description of ill-structured work can be brought into a design
tool for interactive systems.

The precarious balance between rigidness and flexibility The design tools
discussed in Section 3.3.2 don’t have a good balance between being rigid and
being flexible, between being structured and being free. They either lean all
the way to one side or to the other. The truth, as usual, lies somewhere in the
middle.

The freedom is needed to anticipate on all of the complexity of the design,
and the specific requirements this may bring. Early during the design in par-
ticular the designer needs freedom to express what is being found, even if it
doesn’t make sense yet. This advice also emerges from the trenches, especially
when ill-structured work is considered.

The structure is needed to eventually make sense out of all of the design,
and to slowly work towards something which can be implemented. When
structured information is available it can be used by automatic tools, for in-
stance to provide ergonomic advice or generated help text.

The issue is how to make a combination of these two which will support
the design of interactive systems, instead of working against it.

3.5.3 Requirements and suggestions

With the paradigm mentioned in Section 3.5.1 as a guiding principle, and the
open issues from Section 3.5.2 as potential areas to address when describing a
new design tool, this section lists a number of requirements for such a design
tool. Thus, it sets the stage for the next chapter where a theory based on these
requirements will be described. From the whole discussion in Section 3.3 it is
clear that a major part of this theory will be a design representation.

Include artifacts and activities If there is one thing that all the design tools
described in Section 3.3.2 have in common, it must be the use of a combination
of objects and functions to describe the design. While this is no guarantee that
this is the best basis, it does provide strong support for it.

91

CHAPTER 3. HUMAN COMPUTER INTERACTION

In Section 3.2.5 the argument is made to include artifacts into the design
representation. Furthermore, one of the theories presented in the same section
takes activity as its central tenet: “you are what you do”. This is reinforced in
Section 3.1.2 to be crucial to the design of interactive systems.

Now it becomes clear why all these design tools are using objects and func-
tions; using them as abstractions of the artifacts and activities in the real world.
Clearly it is a requirement to include both artifacts and activities in one form
or another in the design tool. Both theory and current practice agree on this.

Include contextual information and support for ill-structured work Why
modeling of ill-structured work is important is explained in Section 3.2.2 when
traditional task analysis methods are discussed. Section 3.1.4 explains that a
model-based approach works best for dealing with ill-structured work. Thus
the design tool should contain some kind of model or design representation.
Most likely this will be similar to the one found in Section 3.2.4.

The need to include contextual information crops up in a number of places
in this chapter. Section 3.1.2 introduces the importance of including the en-
vironment of an interactive system in the design process. In Section 3.2.2 it
is argued that this is one of the main problems with the traditional task anal-
ysis systems, and Section 3.2.3 describes the example of TKS, in which task
structures are enhanced by adding contextual information. An important bit
of contextual information in TKS is on the artifacts that are used in conjunction
with the tasks. Again artifacts and activities are brought together as described
above.

In addition to artifacts, knowledge about less tangible things of the work
environment need to be included as well. The recent developments discussed
in Section 3.2.5 show that this kind of information is increasingly considered to
be important input for the design activities.

The discussion of interaction design representations in Section 3.3.3 further
reinforces the importance of including contextual information.

Balance between structure and freedom The balance between structure and
freedom is a precarious one, in real life as much as for a design tool. It is clear
that neither can win alone. The trick is to find the right balance, and this is still
an open issue [Gla95]. There are actually several issues here, for all of which
this balance is important.

Section 3.3.1 shows that there is a need for incremental design, which pri-
marily stresses the freedom to add information to the design representation

92

3.5. CONCLUSIONS AND REQUIREMENTS

when it becomes available. In Section 3.2.3 is is argued that it is important to
add detail gradually as the design progresses. The design representation thus
needs to take this into account: it will have to allow only a coarse outline in the
beginning, while still allowing additional detail to be added over time. This
need for incremental design is reinforced in Section 3.3.2 where it is made clear
that the lack of support for incremental design is one of the major problems
in the tools discussed. A specific example for architecture in shown in Sec-
tion 3.3.1 where several layers with more and more detail are included in the
design representation. Letting the design evolve in an organized manner is
also called progressive design [GCR98].

Ambiguity and inconsistency are shown in Section 3.3.2 to be important in
the design process. On first impression this seems to argue for freedom more
than for structure, but this is not actually true. Having structure merely means
that there is some kind of organization involved, which can for instance be
used by automated tools to deal with. This organization could still leave room
for ambiguity and inconsistency, in the same sense that humans can agree to
disagree. In fact, when a design representation is structured, ambiguity and
inconsistency can at least be detected automatically.

Build on the analysis results Section 3.2 makes it clear that task analysis,
while having it problems when dealing with ill-structured work and contex-
tual information, is still a very useful way to determine the work to be sup-
ported. The hierarchy of objectives and goals which shape the work are a pow-
erful and well understood way of describing work. Additionally, Section 3.3.2
shows that all the tools discussed there base their design on a task hierarchy
uncovered during analysis.

Multi-disciplinary design teams Section 3.4.2 suggests that it is important
to be clear about responsibilities, priorities, and objectives of each design team
member. Being specific about these issues when describing the design activi-
ties can alleviate potential problems in this area. Furthermore the design team
members need to be able to identify with the design representation, as is made
clear in Section 3.4.1.

Design representation First of all, it is important to make sure the design
representation will be usable by the design team. Based on the observations in
Section 3.3.2 it is interesting to see how unusable some of these tools can be.

93

CHAPTER 3. HUMAN COMPUTER INTERACTION

If the design tool itself is not usable, then what hope is there for the systems
designed with it?

The design representation can also cause some problems. One of these
problems is that it can be very tempting to just describe current practice, in-
stead of designing a new way to support work. Related to this is the possibility
for the representation to limit the design space. Also, care needs to be taken to
keep the design feasible.

There is also conflicting advice on selecting a proper representation. On
the one hand a representation should be chosen which can be interpreted in
terms of the final product, according to what is found in Section 3.3.3. On the
other hand in the same section it is argued that interface details need to be kept
abstracted at this point. Hopefully it will be possible to satisfy both issues at
the same time.

94

CHAPTER 4

A Workspace-Oriented Design Representation

A new design tool called WONDER 1 is described in this chapter. WONDER
provides support for the conceptual design of interactive systems. The cen-
tral concept in WONDER, as the name indicates, is the workspace. This chapter
starts with an informal introduction to this concept, based on an analogy. Then
a more formal description of WONDER is given. This description is organized in
several separate sections on the way of thinking, controlling, modeling, work-
ing, and supporting of WONDER. This separation is based on a framework for
understanding a design tool. Finally, the requirements presented in Section 2.5
and Section 3.5 are revisited, and a set of assumptions are presented which will
be checked against real-world use of WONDER in Chapter 6.

4.1 WONDER’s central concept: the workspace

The term ‘workspace’ denotes a place where a specific job can be done. An
interactive system can be seen as a collection of such places put together in a
meaningful way, to produce a set of spaces for work: workspaces. An early use

1WONDER is short for Workspace oriented design representation

95

CHAPTER 4. A WORKSPACE-ORIENTED DESIGN REPRESENTATION

of the term can be found in the ‘Rooms’ project [CAH87]. There, each Room
is seen by the authors as a workspace. This view does not do much justice to
the term, however, because in Rooms each room is empty, providing just the
bare environment for carrying out work, leaving it up to the user to make each
room useful.

In this thesis the term ‘workspace’ encompasses more than just a ‘physi-
cal’ location or the direct representation on the computer of such a location.
It is seen as a whole, rich, environment aimed at supporting a particular job
or set of jobs. The term ‘workspace’ is being used in a similar way in other
literature [Mar96b, MPH+97]. Before getting into more specific descriptions of
workspaces and their contents, it is illustrative to look at some real-world ex-
amples of workspaces. The workplace of a watchmaker provides an excellent
introduction.

4.1.1 The watchmaker’s workplace

The workplace of a watchmaker provides a good analogy with many interac-
tive systems for several reasons. First, watchmakers carry out several different
jobs as part of their work. This is the same for many information workers.
Second, not all of their jobs are always straightforward, for instance, finding
what the problem is with a broken watch is an ill-structured task. This is
also the same for information workers, who often work on Type II work (See
Section 3.1.4), which consists of ill-structured tasks. Third, watchmakers have
many tools to their disposal. Again, this is the same for information workers,
who’s interactive system provides them with many different ways of manipu-
lating data.

Watchmakers have a head start on information workers for three reasons,
though. They have been around much longer, and consequently have had
more time to organize and optimize their workplace. Their object of work is
hardware, forcing them to work within the laws of nature. They are also bound
by physical space. This is an advantage in the sense that physical space is of-
ten easier to grasp and organize than the ‘virtual space’ within an interactive
system. This latter point is also where the analogy breaks down: because of
its virtual nature, an interactive system can provide a much more complex and
varied organization of the workplace. It also has to interface with the real world
context that remains, unlike the watchmaker’s workplace, where everything is
placed in the real world. Still, it remains interesting to see how watchmakers
organize their workplaces.

Figure 4.1 shows a typical workplace of a watchmaker [Dan81]. The first

96

4.1. WONDER’S CENTRAL CONCEPT: THE WORKSPACE

impression is overwhelming, in particular because of the huge amount of spe-
cialized tools and raw materials required to repair watches. A second look
reveals a very structured organization, however. The whole workplace is di-
vided in smaller spaces, each of which has a specific purpose. Each of these
work spaces is surrounded by the appropriate tools and materials needed for
the specific job that that space supports. These individual spaces are all related
to each other, and to their environment. Thus, contextual information plays an
important part in the organization of the watchmaker’s workplace.

Figure 4.1: Example workplace of a watchmaker [Dan81]

Let’s look at some specific examples of these workspaces. Consider for in-
stance the workspace in the top of the picture, just below the window. This
workspace, a finishing bench, is shown in more detail in Figure 4.2. The main
objective associated with the finishing bench is the examination and assembly
of watches. The raised platform in the center provides a demarcated area to ex-
amine the watches and spread out the parts. The rack behind this area contains
a large number of small hand-tools, which are used specifically for work at the
finishing bench. The available tools and the physical shape of the workspace
provide ample means to reach the objective, without providing distractions.

97

CHAPTER 4. A WORKSPACE-ORIENTED DESIGN REPRESENTATION

Figure 4.2: Watchmaker workspace—finishing bench

In the bottom part of the overview picture another workspace is visible.
This workspace consists of two lathes which are used to create parts for the
watches. The storage drawers within the table top contain additional acces-
sories for the lathes. The lamp can be used to provide light on the lathe where
needed.

The wall shows a small and perhaps not easily detected workspace. The
clock which hangs on the wall in the top left part of the overview is not just
there to tell the time in general. It is also used to adjust the assembled watches,
and to check whether their time-keeping is now accurate. The clock is tuned
to a radio-controlled time signal, so that it will always keep accurate time. It is
shown in more detail in Figure 4.4.

The contextual relationships of these workspaces are interesting. For in-
stance, the finishing bench is located at the window, so that ample natural light
will assist the to see properly when working with the watches. Moreover,
the window is facing north, because indirect sunlight provides the best light
for working with watches. The finishing bench is carefully located within the
workplace. The lathes are located close by the finishing bench, because the
watchmaker will need to change from one to the other occasionally. The cur-
rent arrangement makes this possible easily. Finally, the location of the clock on
the wall again shows the importance of context: its location allows the watch-
maker to check the current time quickly from any location in the workplace,

98

4.1. WONDER’S CENTRAL CONCEPT: THE WORKSPACE

Figure 4.3: Watchmaker workspace—lathes

Figure 4.4: Watchmaker workspace—calibrated clock

99

CHAPTER 4. A WORKSPACE-ORIENTED DESIGN REPRESENTATION

thus supporting the other activities. Still, its location also allows more detailed
time examinations with the additional use of some specific timing machines
located directly underneath the clock.

4.1.2 Analysis of the watchmaker’s workplace

The workplace organization of the watchmaker is in stark contrast with many
interactive systems. Imagine, for instance, what a word processor would look
like when moved to a physical space. For example, there would only be one
place to work; a single document view is used for all word processing work.
All the tools would be located in a circle around the open space, in several big
piles. Some of the tools would be concealed from view as they are located in
tool belts or cabinets. Only opening them will reveal what is inside.

This comparison is not completely fair. After all, word processing is not
confined to the physical world. Even so, word processors usually only pro-
vide a single place to carry out the work: the document. Whatever the cur-
rent objective of the user, it has to be reached by working in the same place.
Surely the document is important, and creating it is normally the main objec-
tive when working with a word processor, but its generality makes it harder
to reach some of the intermediate objectives. For example, the objective ‘write
new text’ has a very different focus than the objective ‘create good layout’, and
the availability of all the layout tools during the process of writing new text
can prove to be very distracting.

The confinement of the watchmaker to the physical world has two proper-
ties that need not be transferred to the virtual world of an interactive system.
First, the physical organization is governed by the laws of physics, which can
appear to be alleviated in an interactive system. For instance, in interactive sys-
tems things can appear in more places than one, or look different depending
on where they are, or change their proximity to each other depending on cir-
cumstances. Second, in an interactive system the organizational structure need
not be revealed solely through ‘physical’ means such as separate windows or
widgets. It is the logical organization which is important, not the visual mani-
festation thereof.

4.1.3 The workspace as the basis of a design representation

The use of the workspace as a basis for the design representation allows the
fulfillment of several of the requirements mentioned in Section 3.5.3. Each
workspace is centered around an objective, which can be reached by carrying

100

4.2. WAY OF THINKING

out one or more, possible ill-structured, tasks. This satisfies the requirement
to build on the analysis results by using the objectives found in a task analy-
sis. The relations between objectives found in the task analysis, hierarchical or
otherwise, can be used to define the relations between workspaces.

The objective is reached by manipulating the materials in the workspace
using tools that are available there. The materials are a representation for the
artifacts, and the tools provide a means for carrying out the activities, thus
satisfying another requirement listed in Section 3.5.3 to include artifacts and
activities in the design representation. Defining tools and materials in this way
is similar to the use of these terms in the Tools&Materials Metaphor [BCNS92,
RZ95].

4.2 Way of thinking

The way of thinking describes the philosophy behind WONDER, part of which
has already been described in the previous section [Wij91]. The main idea is to
use the ‘workspace’ concept to structure an interactive system more according
to the different objectives that it needs to support, instead of just to the raw
functionality it offers. The discourse should be related to what the user is do-
ing at that time, and this should be reflected in the interactive system [Rei89].
These objectives can be determined during the analysis phase of the design
process, for instance using task analysis. Apart from providing more struc-
ture in general, workspaces also much better facilitate support for ill-structured
tasks, thus fulfilling several of the requirements listed in Section 3.5.3.

4.2.1 Foundations of the workspace concept

A number of ideas and concepts underly the workspace; they are listed in this
section.

Mental models The use of workspaces to provide structure for an interactive
system also ties in with the mental models users have of a system. There is no
precise definition of a mental model, but Carroll describes it as:

“a representation (in the head) of a physical system or software be-
ing run on a computer, with some plausible cascade of causal asso-
ciations connecting the input to the output.” [CO88]

101

CHAPTER 4. A WORKSPACE-ORIENTED DESIGN REPRESENTATION

That is, the mental model describes the image the user has of the system and
its workings. It is important that this model is for the most part correct if the
user wants to work efficiently with the system. If the system responds or acts
in a way the user’s mental model did not predict, then the user will be, at least
temporarily, confused. This is why Newman and Lamming stress the impor-
tance of defining the ‘intended mental model’ as a first step during conceptual
design [NL95]. Workspaces provide a good vantage point for creating such a
mental model because there is so much correspondence between the work of
the users and the organization of the system in workspaces.

Hierarchies of objectives An underlying assumption for WONDER is that the
structure of an interactive system is best defined by hierarchies of objectives.
Task modeling will produce these hierarchies with a focus on the tasks needed
to reach the objectives. Once the focus has been shifted from the tasks to the ob-
jectives, and the objectives have been evaluated and cleaned up, the resulting
hierarchies provide the skeleton for the interactive system.

The plural ‘hierarchies’ has been used so far because an interactive system
need not be composed of just a single hierarchy of objectives. A single system
may pursue different objectives partly using the same means, for instance, or
a secondary objective may be instrumental to, but not directly related to, a
primary objective.

Artifacts Artifacts have a special place in WONDER because they have some
special properties in the workplace. First, they are the center of the objectives.
Artifacts can be used to provide additional structure because they are normally
common to several objectives. Second, the artifacts are almost always tied to
the real world outside the interactive system, either because they are physically
present in the workplace or because they are also needed outside of the system,
for example a form which needs to be sent to another organization.

Both these properties cause the artifacts to be invariant for the design. This
can help guide the design by providing some fixed boundaries to work with,
thus constraining the design in a reasonable way. This also explains why the
artifacts are described using fully independent representations in WONDER.

Ill-structured tasks Ill-structured tasks are described by collecting several
types of information into a single ‘task space’: indextask space a description
of a virtual space which contains all the tools and information needed to reach
an objective. Such a task space description lists all necessary ingredients for the

102

4.2. WAY OF THINKING

task except the task itself, which, being ill-structured, can vary. This descrip-
tion adds to Bots’ decision structures in that all possible operations are also
listed. This is important for the design of interactive systems because it facili-
tates a better understanding of the interaction and of the possibility of carrying
out tasks.

Dealing with ambiguity and inconsistency Ambiguous descriptions will
always be present in the early conceptual design. Not all design decisions can
be made immediately, for instance because not enough information is available
for all decisions, or simply because not all decisions can be made at the same
time. Some descriptions simply can not be resolved when they appear in the
design, and they will have to remain vague until they can be. It is important
that these vague and ambiguous descriptions are also part of the design rep-
resentation, so that all design team members can see them easily. Otherwise
they can easily be forgotten or be assumed to be solved. A good representation
for ambiguous information is free text. As the design evolves, the ambiguity
needs to be resolved as much as possible. A gradual transition to a more struc-
tured description, e.g. with a fixed format, or by using specific keywords, can
be used to support this.

A similar case can be made for inconsistencies in the design. These, too,
will appear in the early design. While a support tool can easily keep such
inconsistencies from appearing in the first place, this would not prove very
useful. Often inconsistencies alert the designer to different approaches to or
possibilities for dealing with an issue, or they indicate that conflicting forces
need to be resolved. In any case an inconsistency provides useful feedback into
the design process, and such inconsistencies should be allowed in the design
representation. As with the ambiguities, inconsistencies need to be resolved as
the design progresses. Supporting tools can help this process by alerting the
designer to inconsistencies, and provide reports on them if needed.

4.2.2 The elements of WONDER.

Based on the ideas described in Section 4.1 and Section 4.2.1, WONDER uses
three concepts to describe the conceptual design: workspace, material, and
action. These concepts are described in detail in Section 4.3, but their meaning
is described here, along with some analogies into the watchmaker’s workplace
described in Section 4.1.1.

103

CHAPTER 4. A WORKSPACE-ORIENTED DESIGN REPRESENTATION

Definition 1 A workspace is a place where getting a particular job or set of jobs done
is supported.

Two examples of workspaces in the watchmaker’s workplace are the lathes
which support making small parts for the watches, and synchronized clock
which supports timing the watches. Workspaces are directly tied to one or
more objectives, and since they also have relationships with other workspaces,
they will embody the hierarchies of objectives mentioned above.

Definition 2 Materials are the data that needs to be changed or used to accomplish
the goals.

Materials are the stuff that is being worked on. For instance, the watch-
maker uses springs, levers and wheels as material. With interactive systems
the material is always data. Often it is changed, but it can also be used as input
to make decisions or to change other materials. Materials embody the artifacts
mentioned above. While materials can be used in more that one workspace,
they are independent of them. The same material can take a different appear-
ance in different workspaces. What is an image to one workspace may just be
a blob of data to be mailed out to another.

Definition 3 Actions are generic operations that apply to more than one material, or
that needs to be present in more than one workspace.

Defining actions separately from workspaces and materials helps to make
sure that later on in the design similar things are done in similar ways. The
watchmaker has a number of default actions which he applies to all his materi-
als, such as picking up a material or putting it in a cupboard. Actions provide
hints towards the actual interaction in workspaces which will be designed later,
and they help to ensure consistency as the design progresses.

Definition 4 A tool provides a means to inspect or change a material in the context
of a particular workspace.

In addition to these three elements, there is a fourth one that also warrants
a description here, even though it is formally defined as part of the workspace
description. Tools are directly tied to particular workspaces. Tools arrange a
set of actions and their own additional interactions within a workspace so that
materials can be shown or changed. Tools provide all the means needed to
carry out the ill-structured tasks mentioned above.

104

4.3. WAY OF MODELING

4.3 Way of modeling

This section contains a description of how workspaces are modeled. First types
of models are discussed in order to select the right type of model to use, and
then the same is done for the media used in the model. Finally, all three ele-
ments, workspace, material, and action are defined, keeping in mind the de-
sign representation pitfalls mentioned in Section 3.5.3 on page 93. A represen-
tation of the conceptual design can be created by describing these elements.

4.3.1 Types of models

The requirements for the structure and organization of the design representa-
tion are concerned primarily with the flexibility needed to support an iterative
design activity that starts with uncertainty. The type of model used to de-
scribe the design greatly influences this aspect. Wijers recognizes four types
of modeling representations with respect to information systems development
[Wij91]. Free models provide no restrictions: anything goes, the only constraints
are those imposed by the designers. Free models provide great flexibility and
expressiveness, but can not be checked or supported in an automated way.
Structured models are constrained by the types of concepts they use and the
properties of these concepts. Typical examples are diagrams, tables, and struc-
tured text. Structured models can be checked for consistency in as far as this
can be determined from the structure. Mathematical models are based on math-
ematical constructs, and are particularly useful for deducing system character-
istics. Finally, dynamic models such as simulation models and prototypes offer
experimentation facilities, and can be used to explore dynamic behavior.

Dix makes a strong case for formal representations of interaction [Dix95],
which confirm to what Wijers calls mathematical models, based on the argu-
ment that a formal representation forces the designers to be more explicit, and
that formal representations allow automated analysis of these representations.
This allows a whole set of errors to be caught early in the design process. There
is a lot of truth in this claim, but it does not apply to representations for con-
ceptual design for two reasons.

First, being explicit within a formal framework takes a lot of time, and
leaves no room for ambiguity. While this latter argument is very important
later in the design process, it actually hinders the conceptual design process,
simply because not everything is crystal clear right from the start.

Second, exactly which representation should be described formally? It was
made clear in the previous chapter that just describing the interactions with

105

CHAPTER 4. A WORKSPACE-ORIENTED DESIGN REPRESENTATION

the interface is not useful for the conceptual design; even summarizing the in-
teractions will not help, because this summary will not lead to useful building
blocks, and because interaction at a conceptual level should really be designed
top-down, cf. the discussion of UAN in Section 3.3.3.

Dynamic models are often used, mostly as prototypes. When they are used
in interactive systems design or user interface design, dynamic models can
take up a lot of resources, for example time or manpower, before they become
useful. Creating a convincing visual appearance or programming convincing
interaction requires a level of detail not usually attainable during conceptual
design, or that is simply too expensive. In addition, dynamic models, often im-
plemented as prototypes in interaction design, do not facilitate the automated
checks that are possible with structured and mathematical models. This makes
it hard to ensure consistency towards the end of the conceptual design.

This leaves free and structured models. It is tempting to rule out free mod-
els on the basis that they have no structure, can not be checked, and might be
open to different interpretations. This leaves structured models, which seem
to be most suited: they can be checked automatically, while still leaving some
room for inconsistencies in the models. Structured models do have the draw-
back that they do not allow ambiguity. Options always have to be clear because
of their rigidly defined structure, and while such options can be inconsistent
with each other, they can not be ambiguous. A better solution seems to be a
combination of both free models and structured models, with as much as pos-
sible a gradual transformation from ‘free’ to ‘structured’ information.

4.3.2 Media for models

The requirements in Section 3.5.3 relevant to the selection of media only show
that the representation need not be graphical, and that it needs to be usable by
the design team. Possible choices for media are either text, graphics, or both.
Other media, such as audio or video, are not considered because they are too
demanding on common hardware2, because their creation often involves much
work which is not likely to pay off later in the design process, and because they
are less easy to access.

Currently conceptual design is often supported by sketching a first impres-
sion of an interface, so pictures seem to have a natural advantage, also because
interactive systems are often characterized by their graphical appearance. This

2When these decisions were taken in 1996.

106

4.3. WAY OF MODELING

advantage may be misleading, though. It has been argued above that struc-
ture, as specified by the goals and objectives, is more important than the way
the interface will eventually look. Continuing that line of reasoning, it makes
sense to focus on this structure first, and not be confined by one of a number
of potentially suitable graphical representations. For this reason text is chosen
as the media of choice for the representation of ‘free’ information in WONDER.
The same choice is made for ‘structured’ information, although some graphi-
cal diagrams may also be included here.

4.3.3 WONDER elements

The three elements of WONDER are workspaces, materials, and actions. In this
section each of them is described in detail, as are the relationships that exist
between them.

The workspace representation Several groups of information, each address-
ing different aspects of a workspace, taken together make up the workspace
representation. Table 4.1 shows the different groups and their elements.

The first group is associated with the position of the workspace in the over-
all system and with general information on the workspace. The goal is de-
scribed here, in one or two succinct sentences. This defines the purpose of the
workspace, and indicates what needs to be accomplished there. In addition
to the goal, the context is also described. The context indicates the relation of
the workspace to the whole job and to the work environment. Typical things
described here include the importance of the goal and the reasons for this im-
portance, the triggers or circumstances which can lead to this workspace, the
specific circumstances under which the job in this workspace is carried out, etc.

The second group describes the structured relationships with other work-
spaces. Three types of relationships exist. The ‘enclosed in’ relationship lists
the workspaces that the current workspace is a part of. The ‘contains’ relation-
ship lists which additional workspaces the current workspace contains. To-
gether these relationships sketch a hierarchy of workspaces. The third type of
workspace relationship is the ‘works with’ relationship. It indicates that the
referred workspace works closely with the current workspace, for instance by
providing common supporting tools, or because the jobs of the workspaces are
related to each other but still distinct.

The third group describes the materials relevant to the workspace. Since
these materials are invariant with respect to the workspaces, i.e. they remain

107

CHAPTER 4. A WORKSPACE-ORIENTED DESIGN REPRESENTATION

the same materials no matter in what workspaces they are presented, only sim-
ple references in the workspaces are needed to list the materials. More informa-
tion is needed, though, even though the materials remain the same regardless
of the workspace they are used in, the way they are used and needed can dif-
fer greatly between workspaces. For instance, only particular attributes of a
material might be important, or the material need not be changed.

The fourth group discusses the tools and the way they interact with the
materials. Since tools are unique to a workspace, they need to be described
in detail here. They can not be described as separate elements. For each tool,
the affected materials need to be listed, and the way in which each material
is affected needs to be described. The effects of the tool shall be described in
terms of existing actions as much as possible to allows a consistent interface
to be designed later. This group also contains a brief textual description of the
type of interaction best suited for this workspace.

The fifth group contains housekeeping information. This includes general
remarks about, and the history of, the workspace. The remarks include ‘to do’
items and similar unresolved issues or warnings. They can be seen as a staging
area for the next layer of detail to be added. The versioning information asso-
ciated with the evolution of the workspace is very important. While in general
only the most recent description of a workspace is used, it may be necessary
to look at the changes made to the workspace over time, in particular when
the changes to the design consist of important design decisions. Documenting
both the reasons for these changes and the changes themselves will help the
designer understand the conceptual design in later stages of the development
process.

The material representation The definition of a material representation is
given in Table 4.2. Four groups of information make up the representation.

The first group contains the identification and general description of the
material, including a reference to its physical counterpart, if any.

The second group describes the current use of the material. If possible the
description should be accompanied by one or more examples of the material as
it is being presently used, e.g. through photographs, scans, or example screens.
In addition to the description, contextual information also needs to be added,
for instance whether this material is also used to communicate with people
outside the scope of the interactive system.

The third group lists the relationships which materials can have. Some of
these relationships are explicit in that one material can contain another material

108

4.3. WAY OF MODELING

General information
Goal Describes the goal which this workspace should support. The

goal is described in terms of the worker.
Context The context describes what the circumstances are for the use of

this workspace, such as the trigger which led to this use.
Workspace relationships

Encloses Lists the workspace(s) of which this workspace is a part.
Contains Lists the workspace(s) contained within this workspace.
Cooperates Lists those workspace(s) which can be used to support tasks

within this workspace.
Materials

Materials The materials the workers will use to reach their goals, and the
context in which these materials will be used.

Tools
Tools The tools, operating on the materials, which the workers use to

reach their goals.
Interaction Brief textual description of the type of interaction which seems

most suited.
Housekeeping information

Remarks Additional remarks about this workspace, such as possible pit-
falls with particular design solutions, additional emphasis for as-
pects of the workspace, etc.

Version history Log of changes to the workspace, including brief explanations of
these changes.

Table 4.1: Workspace representation definition

109

CHAPTER 4. A WORKSPACE-ORIENTED DESIGN REPRESENTATION

as an attribute. These direct relations are captured as attributes. Relationships
may also be more implicit, for instance when materials are indirectly related,
or when strong contextual links exist between two materials even though this
is not expressed explicitly within the interactive system. These relationships
are called associations, and they are included so that the design team can be
aware of them.

The fourth group consists of housekeeping information, and as with the
workspaces, contains both room for remarks and versioning information.

General information
Description A description of the material, in particular how it corresponds

with the real world, and its position in the work of people.
Links with current artifact

Current use Current use of this material, as found during analysis of work
context. Note that information can also be used implicitly.

Example Example of this material. Based on current use if possible.
Relationships

Attributes The attributes of the materials. Can refer to other materials.
Associations Materials are often associated with other materials, for instance

because there is an implicit relation between them.
Housekeeping information

Remarks Additional remarks about the material.
Version history The revision history of this element including comments.

Table 4.2: Material representation definition

The action representation The action representation is kept as simple as pos-
sible. Its main purpose in the conceptual design is to ensure that similar opera-
tions will be implemented in a similar way across workspaces. The action rep-
resentations can also be used to determine which workspaces contain similar
actions. During conceptual design the most important function of the action
representation is therefore to be a placeholder. During later design activities
actual implementations will be proposed for each action.

The action representation is shown in Table 4.3. Since actions mostly serve
as placeholders at this stage of the design, no specific details are given in the
definition. Materials are not included in action representations, even though
actions always operate on materials. This makes it easier to keep actions con-
sistent across different materials. By specifying just a single ‘select’ action, for
example, all selections can be made in a uniform way, regardless of the material
being selected.

110

4.3. WAY OF MODELING

Goal The goal of the action. What will it accomplish.
Extensions A list of possible extensions for the action. An example of an

extension is ‘multiple selection’ as an extension of the ‘select’ ac-
tion.

Remarks Additional remarks about the action. Mostly used to indicate
hints and issues for later design activities.

Version history The revision history of this element including comments.

Table 4.3: Action representation definition

How workspaces, materials, and actions are combined There is no overall
structure in which the workspaces, materials, and actions are combined. In-
stead, these combinations follow from the individual representations of work-
spaces, materials, and actions. Figure 4.5 shows a diagram which clarifies
these relationships. The diagram is consistent with Predicator Set Model (PSM)
[tH93]. Appendix B contains a diagram explaining the model components of
PSM. PSM was chosen for the model because it can deal easily with the re-
lationships which can exist between different instances of the same type of
element in WONDER.

Not having a pre-imposed structure allows the model to be inconsistent,
because one workspace may contain one end of a two sided relation, while the
other workspace referenced in the relation may not contain the other part. In
this case, this lack of forced consistency is a virtue, and in fact a requirement as
outlined earlier in Section 4.2. These inconsistencies, however, can and should
be checked and noted during later design activities.

The set of material representations is independent from the workspace rep-
resentations. While materials can point to each other through the associations,
they do not point to workspaces. This is in accordance with the philosophy
that the materials exist independently from the workspaces. The relationship
between materials and workspaces exists by having the workspaces point to
the materials.

The workspace representations do refer to the materials, and they also re-
fer to other workspaces, forming combinations with them. The most common
combination of workspaces is the hierarchy, where one workspace contains
several smaller, more detailed workspaces, each of which can in turn also con-
tain one or more workspaces. Such a hierarchy clearly resembles a goal or task
hierarchy, where one top-level goal is split into several subgoals, and so on. It
is important to note that several such hierarchies can exist at the same time if
there are several main goals to be reached through the interactive system.

111

CHAPTER 4. A WORKSPACE-ORIENTED DESIGN REPRESENTATION

Remarks

House-
keeping

Version
history

MaterialWorkspace

Context

Action

Exten-
sionsCurrent

use

Example

Material-
in-use

Tool

Goal

Descrip-
tion

Association

Attribute

Enclosed in

Works withContains

Figure 4.5: PSM diagram of workspaces, materials, and actions

112

4.4. WAY OF WORKING

Individual workspaces can also be linked together through the ‘works with’
relationship. These relations provide a second structuring in addition to the
hierarchical structure. They can bring together workspaces from different hi-
erarchies, or they can emphasize which workspaces are closely related within
a hierarchy.

Descriptions of actions, like those of materials, are also independent from
workspaces. Their only relationship with workspaces is through the tool de-
scriptions within the workspaces.

Evolution of the representations The definitions of the different representa-
tions presented above only show the final state of each representation. It is
important to note that the representations need not confirm to these final def-
initions from the start. This has to do with the requirements in Section 3.5 for
a flexible representation which initially needs to allow ambiguity and incon-
sistency. A migration from free to structured information can support this by
using free text initially to give a rough description, and then gradually move
towards a more structured representation which is less ambiguous, and which
can be cross-checked for consistency when needed. Table 4.4 shows which
attributes of each concept remain free text, and which migrate towards a struc-
tured representation.

workspace
free goal, context, remarks, interaction
free→ structured materials, tools
structured enclosed in, contains, works with, version history

material
free description, current use, example, remarks
free→ structured associations, attributes
structured version history

action
free goal, extensions, remarks

Table 4.4: Structuredness of elements

4.4 Way of working

Creating the conceptual design for an interactive system is often seen as a
creative activity which can not be easily controlled or written down: an ill-
structured task. Ill-structured tasks can, however, be written down to some

113

CHAPTER 4. A WORKSPACE-ORIENTED DESIGN REPRESENTATION

extent, and it is important to do so, because doing so makes it clear what has to
be done to create the workspace model, which decision have to be taken, and
what criteria need to be used.

Three major activities can be recognized in the process of creating a work-
space model. Figure 4.6 shows these activities. During the first activity work-
spaces are found in the data collected during analysis. During the second ac-
tivity each workspace is assessed. The purpose of this second step is to evalu-
ate whether each workspace still makes sense within the whole of the design.
The third major activity refines the workspaces as much as possible. The other
WONDER elements, materials and actions, follow from the workspace descrip-
tions, and should be described during the refinement activity.

Find
workspaces

Assess
workspaces

Refine
workspaces

Figure 4.6: Task structure—creating a workspace model

Together these three activities make up the process of creating the work-
space model. The order shown in the task structure should be taken with a
pinch of salt. In practice it is likely that all three activities will continuously be
carried out in no particular order, depending on what the design team encoun-
ters during design.

114

4.4. WAY OF WORKING

4.4.1 Finding workspaces

Workspaces can be found in two ways. The initial set of workspaces is based
on the goal-hierarchies found during analysis. Each goal in the hierarchy can
be seen as a potential workspace. Just describing the workspace title, the asso-
ciated objective, and some context, such as a trigger for the objective, is needed
to turn a goal into a prospective workspace. The collection of workspaces cre-
ated in this way will need to be evaluated and undergo further changes, but
provides a good starting point for the design nonetheless.

Once an initial set of workspaces is present, additional workspaces can be
found by examining current tasks and artifacts, and as a result of the assess-
ment activity.

4.4.2 Assessing workspaces

Given that many iterations are needed to create a conceptual design, each de-
scription will need to be assessed frequently to see whether it still fits in with
the remainder of the design. During assessment a number of criteria are used
to determine whether a potential workspace needs to remain one, or whether
it can better be split, removed, or taken together with other workspaces. Fig-
ure 4.7 shows this process using a task structure. During assessment a poten-
tial workspace can be in three states: it is either too simple, too complex, or just
about right, rather like the porridge [Ano].

Too simple If a workspace is too simple, than it is really not a workspace.
This is the case when the workspace’s objective can be achieved in a straight-
forward way, i.e., if the tasks within it are not ill-structured. Most likely it is a
tool, or it should be bundled with several similar small workspaces. An excep-
tion can be made for very lengthy tasks with many distinct actions. In this case
additional navigation support may be needed, and a workspace can be a more
appropriate approach.

Too complex A workspace can be too complex when it tries to satisfy several
goals at once. This will only work well if the goals are strongly related, or
when the tools needed in the workspace are used for both goals. Otherwise it
is better to break the workspace up into two separate workspaces, one for each
goal. Even when a workspace only seems to support one single goal, it might
be too complex. This condition will usually manifest itself by having two or

115

CHAPTER 4. A WORKSPACE-ORIENTED DESIGN REPRESENTATION

Review
workspaces

Remove
workspace

Rewrite
as tool

Locate
common tools

Complex
workspaces

Rewrite
as workspace

Break down
workspace

Relevant?

Too simple?

No
Yes

No

All workspaces reviewed?

Candidate for workspace?

Found?

Should be broken down?

Yes

Yes

Yes

No

No

Yes

No

Found?

Figure 4.7: Task structure—Assessing workspaces

116

4.4. WAY OF WORKING

more separate groups of tools that are not strongly related to each other, and
which support different sub-goals.

New workspaces Assessing existing workspaces can lead to completely new
workspaces as well. This happens when common tools are found in several
workspaces. If the same tool or set of tools is used in a number of workspaces,
then it might be a good candidate for a new supportive workspace; to make
this decision it is important to consider how the users regard these tools in
each of the workspaces. If the tools are seen as an integral part of the tasks in
each workspace, then it might be better to leave them as they are. Otherwise
they can be separated out.

The final assessment criterion is one of completeness. The purpose of this
criterion is to determine whether all workspaces have been found. The domain
expert (See Table 4.5 and Section 4.5) is the only design team member who can
really make this assessment. Some assistance can be provided by the results
from the consistency checks, for instance because a workspace or material is
referenced but not currently included in the descriptions.

4.4.3 Refining workspaces

After a workspace has been assessed, it can be refined further. This refinement
process serves two goals: it tries to make the description of each workspace
as complete as possible, and it tries to ensure no errors or questions are left
within a workspace description at the end of the conceptual design activity.
The former goal will be most important during the first iterations, with the
latter becoming more important towards the end of the conceptual design pro-
cess.

Each workspace description starts out with only the most minimal of infor-
mation, and then it is gradually expanded to a complete description following
Table 4.4. While no particular expansion is mandatory, a natural order of ex-
pansion can be recognized, which is shown on the right-hand side in Figure 4.8.
The left-hand side of Figure 4.8 shows a task structure for adding each of these
description elements. The interaction between Domain Expert (DE) and Inter-
action Designer (ID) is clearly visible.

Cleaning up workspace descriptions Once a workspace description is start-
ing to be complete, it needs to be ‘cleaned up’ regularly. As they evolve, the
descriptions often accumulate questions, problems, and errors. This is good:

117

CHAPTER 4. A WORKSPACE-ORIENTED DESIGN REPRESENTATION

DE suggests
new elements

ID interprets
and analyses

Offer criticism
and suggestions

and context
Create goal

Describe
tools

Describe
materials

Describe
relations

No

Yes

Agree on final description?

Needs to be changed?

Yes

No

Figure 4.8: Refinement step 1: creating workspace descriptions

allowing the design team to express their problems and questions directly in
the design representation keeps them visible, and will cause them to not be
forgotten. It also helps the design team by allowing them to concentrate on
the issues at hand, knowing that there is a record of those problems, questions,
and errors. Eventually, however, these problems and errors will need to be re-
solved. This process usually involves decision taking and cross checking with
other relevant parts of the design.

Sometimes this process can have dramatic effects. Whole workspaces may
have become obsolete, or changes must be made in many workspaces. Such
large and unsettling changes need to be made and supported. At this point in
the design process making such sweeping changes is cheap. Once implementa-
tion has started it will be very hard to make similar changes without incurring
significant cost.

This process of cleaning up the design is shown in Figure 4.9, which shows
a cyclic process in which workspace descriptions and their relations are scru-
tinized time and again. The act of scrutinizing implies a critical look, and this
is exactly what is needed at this time. Anything which is not clearly specified,
that is represented by vague descriptions, needs to be investigated further, and

118

4.5. WAY OF CONTROLLING

to be made more explicit and more concrete if possible. Open questions, re-
marks, suggestions, and errors noted in each workspace should be treated in
a similar manner. The relations amongst workspaces and the connection be-
tween workspaces and materials should be scrutinized in a similar vein. In-
consistencies should be noted and if possible resolved.

Scrutinize
workspace

Try to resolve
issues

Scrutinize
relations

Yes

All workspaces scrutinized?
Yes

No

Warnings & Questions?

Warnings & Questions?

No

Yes

Figure 4.9: Refinement step 2: cleaning up a workspace

4.5 Way of controlling

The way of controlling deals with the management of the development process
based on the way of modeling and way of working presented earlier, including
planning and plan evaluation and regular project management aspects includ-
ing quality assurance [Wij91]. Most of these issues are not particular for the
use of WONDER. Regular project management, for instance, is needed in any
project, and generic project management literature can be used [BB92, for ex-
ample]. Van Meel argues that for design projects an adaptive control strategy is

119

CHAPTER 4. A WORKSPACE-ORIENTED DESIGN REPRESENTATION

useful [vM94]. Such a control strategy takes the design project as an adaptive
process of learning which needs to be incremental. This strategy ties in with
one of the requirements listed in Section 3.5.3.

In this section only those aspects of the way of controlling which are partic-
ular to WONDER are described. In fact, the main difference when working with
WONDER is with the people. The need for, and unique properties of, a multi-
disciplinary team are made clear in Section 3.4. In addition, quality assurance
is an interesting topic. Who will have the final say in the quality of the design?

4.5.1 The design team

Section 3.4 makes it clear that interactive systems can only be designed by
multi-disciplinary design teams, and it also describes that such teams have
their own set of issues to be dealt with. One of the conclusions repeated in
Section 3.5.3 on page 93 is that it is very important to be clear about the respon-
sibilities of each of the design team members.

The selection of roles presented in Table 4.5 does not correspond directly to
the findings presented in Section 3.4.2. This is because the few recommenda-
tions presented in that section are aimed primarily at designing and creating
the user interface. Creating the conceptual design requires a different set of
skills. The set of roles for WONDER is based on an inventory of skills needed
and on experiences from the case study presented in Chapter 2.

Overview of the design team Table 4.5 contains an overview of the six roles
that are important when creating a workspace based design. It is important
to realize that these roles need to be divided amongst the team members, and
that a good fit might not always be possible. The exact allocation will always
depend on the team at hand, but it is important to make clear beforehand who
gets assigned which roles, and consequently, which responsibilities. The do-
main expert and the interaction designer are the two key roles. Both roles re-
quire a lot of work, and it is their interactions which makes the design process
work. This explains why it is important that these interactions are visible to
everyone involved, which is what happens when the WONDER representations
are used to record the results of these interactions. For this reason it is strongly
advised not to assign their roles to a single person, even if this person is quali-
fied for both roles. Combining the roles would lead to a lot of implicit commu-
nication within one persons head. This would make the design process more
visible, and also more prone to errors because there is no need to be explicit

120

4.5. WAY OF CONTROLLING

Interaction designer Coordinates design efforts of all team members. Designs for
and guards the usability of the design

• creating design descriptions

• overall design of the interactive system

Domain expert Guide the creation of the conceptual design. Tries to translate
knowledge of the work into design descriptions by commu-
nicating this knowledge to the interaction designer.

• design domain concepts, functionality, and support

• assess evolving design

Project manager Coordinates the project. Makes sure that facilities and peo-
ple are available, monitors the progress of the project. Keeps
track of administrative issues.

• finish the project in time and on budget

Visual designer Given the design descriptions, the visual designer tries to
find proper visualizations for those concepts.

• assess the evolving design with respect to visualiza-
tion and the visual interface

Software engineer Given the design descriptions, the software engineer tries to
identify potential implementation problems, and has to as-
sess the feasibility of the design concepts.

• assess the evolving design with respect to software
engineering principles

Participating users The users give continuous feedback on the design as it
evolves. They can also add to the design, for instance by
making suggestions based on solutions they are currently us-
ing or would like to use.

• assess the evolving design with respect to their work

Table 4.5: Roles in the design team

121

CHAPTER 4. A WORKSPACE-ORIENTED DESIGN REPRESENTATION

and thus there is much less of a confrontation with the design ideas. This ap-
pears to be less of a problem with the other roles, as long as the team member
is aware of the different sets of responsibilities.

Roles in the design team The domain expert has two major duties. First, they
need to find and refine the workspaces by analyzing the collected information,
and by making additional judgments based on their knowledge of the domain.
Their efforts should primarily focus on the structure and completeness of the
design. Second, they needs to assess the evolving design with respect to the
domain. Examples of this assessment include whether all goals can be satisfied
with the current design, and whether the current design is in accordance with
the view of the users on their work.

The major duty of the interaction designer is the creation of the actual design
description of the workspaces and materials. There are two reasons for having
the interaction designer do this. First, the interaction designer has more expe-
rience with these descriptions, in particular when it comes to the more detailed
descriptions, and the way in which they will eventually evolve into actual user
interface specifications. Second, by separating discovery and definition into
two separate roles, the designers are forced to make the design descriptions,
ideas, and assumptions explicit. This greatly reduces the possibility of misun-
derstandings and discrepancies within the design.

The role of the project manager is a supporting role. The main task of the
project manager in WONDER is to facilitate the design team in accomplishing
their design on time and within budget. It is important to stress that the project
manager is not the team leader, but rather an administrative and managerial
aide to complete the project successfully.

The visual designer and the software engineer are similar roles, and neither
can make significant contributions to the design at this point. This is true for
the visual designer who can not start with any visual design, because this is
explicitly not a part of WONDER. It is true for the software engineer, who also
cannot contribute to the design. The reason they are part of the design team
despite not being able to contribute directly, is that they can evaluate the work-
space descriptions from the point of view of their own expertise. Even if they
cannot contribute now, they will still have to extend the WONDER design later
in the development process, so that their early evaluation can be used to find
bad solutions early on, and correct them while it is still cheap to do so.

Finally, the participating users provide a similar role; they will eventually
do their work with the system, and their feedback on working through their

122

4.6. WAY OF SUPPORTING

daily tasks given the workspaces can provide useful feedback to the design
team. This feedback is only useful when the workspaces have been somewhat
finalized, and will be particularly useful in combination with scenarios and
simple prototypes. These users can be seen as informants providing various
contributions at times relevant to the design process [SRAD97].

Who leads the team As mentioned above the project manager is not consid-
ered to be the team leader. There are two reasons behind this view: the project
manager is seen as a supportive facilitator in WONDER, and it is assumed that
the project manager does not have the ability or knowledge to make the qual-
itative assessments that guide the project. Perhaps a better term for this role
would be a facilitator or administrator [FPB95]. The arguments behind not
having an independent outsider be team leader have been discussed in Sec-
tion 3.4.2.

This leaves the domain expert and the interaction designer as viable can-
didates for the position of team leader. While the interaction designer has the
advantage of knowing WONDER and its associated activities well, there are two
compelling reasons for not making the interaction designer the team leader.
First, the stake of the interaction designer is always smaller than that of the
domain expert, for whose area of expertise the system is being developed. Sec-
ond, a lack of knowledge about the domain will make it much harder for the
interaction designer to make qualitative judgment calls. Yet quality control is
an important aspect of the job that needs to be done carefully, and by someone
who can judge the quality not just of the overall work, but also for the situation
it is going to be used in. This leaves the domain expert as the best candidate for
being team leader.

4.6 Way of supporting

The creation of a conceptual design using workspaces can benefit greatly from
good support. In fact, some kind of computing support is almost mandatory,
as will be explained in this section. A research instrument providing this kind
of support is described in more detail in Chapter 5. The remainder of this
section contains an explanation of the need for computer assistance, and a list
of requirements for such assistance.

123

CHAPTER 4. A WORKSPACE-ORIENTED DESIGN REPRESENTATION

The need for computer assistance The ways of modeling and working de-
scribed in Sections 4.3 and 4.4 do not contain explicit references to a need for
computer assistance. Yet, in practice working with WONDER representations
in a meaningful way requires computer assistance. The requirements listed in
Section 3.5.3 explain this. There is it asserted in the discussion on freedom vs.
structure on page 92 that the use of a structured design representation allows
ambiguity and consistency to be detected at the least. As is shown in Table 4.4,
several of the elements in WONDER representations are structured, thus allow-
ing these checks.

These checks can and should be automated. For instance, automatically
creating overviews of current problems and issues helps to make visible what
still needs to be done. The same holds for automatically generated lists of in-
consistencies. For instance, by comparing how workspaces refer to each other,
inconsistencies in the design can be noted. Some examples of these overviews
are shown in Section 5.2.4. While it is possible to do these checks manually,
this does not make sense, because the time spent on doing this can not be used
for real design work, and because the work is quite tedious, which will likely
result in it not being done as often or careful as it should be.

Additional benefits of computer assistance There are a number of additional
benefits that can be reaped from the use of computer assistance. For instance,
it will facilitate browsing through the design in a much more varied way than
can be achieved when the representations are organized in a single way, for
instance as a stack of paper in a folder. As an example of this browsing, con-
sider the use of the many connections between the representations as a means
to move from one to another.

There are several overviews which can be generated from the collection of
workspace and material representations. These overviews, showing for exam-
ple which materials occur in which workspaces, can provide additional insight
into the complete design, and as such are very useful. Automating the creation
of these overviews makes them available all the time without additional effort
from the design team.

Computing support also makes it easy to maintain a useful history of the
design. If people remember to add notes saying what was changed and why,
they often do not include all the small changes that they made, for instance be-
cause some changes are not deemed important at the time. Having automated
version control which prompts for an explanation of the changes made, and
records all of these changes in detail, alleviates this problem.

124

4.7. THE DESIGN PROCESS FOLLOWING WONDER

4.7 The design process following WONDER

The use of WONDER provides only the start for the design process. Using it
results in a conceptual design, but then much additional work needs to be done
before the interactive system can be implemented in the work environment. In
this section several popular design techniques are discussed that can be used
in conjunction with WONDER.

Scenario-based design In scenario-based design a scenario, i.e., “a narra-
tive description of what people do and experience as they try to make use of
computer systems and applications” [Car95, p. 3], is used to guide the design
activity pro-actively [Car94, Car96]. In this context a scenario is used as it is in
film making, to denote a script that will be followed. In scenario-based design
a number of these scripts are created, each of them describing a particular work
situation and how this situation is played out, for example a letter coming in.
Then, all of these scripts are played out using a particular design or idea to see
what the implications of the design are for the different aspects of the work as
described by the scenarios. Note that this is different from another use of the
word ‘scenario’, where for instance the use of different types of systems would
be called the ‘scenarios’.

WONDER provides a good starting place for scenario-based design, because
it brings several of the requirements for scenarios together in a single place.
The focus of scenarios matches that of workspaces fairly well, because both
are centered on work-related objectives. Therefore, workspaces form a natural
starting point for scenarios. Furthermore, the presence of tools and materials
in the workspace descriptions allows for additional benefits for the use of sce-
narios. Their presence makes it easy to verify the correctness of a workspace,
while at the same time allowing exploration of how these materials and tools
can be represented best using user interface components, given normal work
situations.

Prototyping The workspaces also provide a good starting point for a variety
of prototyping activities. The structure of the workspaces makes it easier to
tackle individual parts of the interactive system. The presence of materials and
tools in the workspace descriptions serves as a checklist of those things that
need to be represented in the prototypes or sketches. Two design approaches
are particularly suited. Prototyping can be used in combination with scenario
based design to provide a rich exploration of the system. Prototyping can also

125

CHAPTER 4. A WORKSPACE-ORIENTED DESIGN REPRESENTATION

be used in the sense of Seaton and Stewart (See Section 3.3.2), where workspace
after workspace is added to a working system installed in the workplace.

Design Space Analysis Finally, Design Space Analysis (DSA) is also a use-
ful technique to further the design into an implementation. DSA provides a
structured way to explore different alternatives for a particular design prob-
lem, and for judging the trade offs that need to be made [MYBM91, MBYM91].
DSA works best for specific and focused decisions, where certain alternatives
need to be considered [vACM95]. This explains why using workspaces as a
start works well for DSA. Once a workspace is defined, there are many spe-
cific choices to be made, for example “what kind of interaction is needed for
this tool?” or “what kind of representation is needed for this material?”. DSA
can help to ensure that all options are evaluated and the more optimal design
solution is chosen.

4.8 Reflections on WONDER

WONDER has now been described. This section contains a look back to the re-
quirements and suggestions formulated in the previous chapter. Next, a num-
ber of assumptions are stated which can be used to test WONDER in a real-world
case. The section concludes with some general observations on WONDER.

4.8.1 A look back at the requirements

Section 3.5.3 contains a number of requirements and suggestions based on the
experiences in the case study presented in Chapter 2 and the literature pre-
sented in Chapter 3. In this section it is shown how these requirements and
suggestions have been addressed in WONDER. Table 4.6 on page 128 provides
an overview.

Include artifacts and activities Activities and artifacts are a common theme
in all the design tools described in Section 3.3.2. WONDER includes both as
described in Section 4.2: tools as a representation for activities and materials
as a representation for artifacts. Also, these items are amongst the elements of
WONDER’s representations described in Section 4.3.3.

126

4.8. REFLECTIONS ON WONDER

Include contextual information All recent developments include contextual
information in one way or the other, as described in Section 3.2.5. WONDER in-
cludes some contextual information in its representations. This is particularly
clear in the workspace representation, where there is an explicit field for con-
textual information. In addition, contextual information is also encoded in the
goal of each workspace, and in the relations between the workspaces. Further-
more, in the material workspace the current use of each material is described,
and an example of its use is given.

Include support for ill-structured work The importance of support for ill-
structured work is demonstrated in Section 3.2.2. In Section 3.1.4 it is argued
that a model-based approach works best for this purpose, and indeed WONDER
is model-based. The approach WONDER takes for dealing with ill-structured
work is based on the ideas underlying the method described in Section 3.2.4.
This idea is to describe the task hierarchy top-down as best as one can, and
then instead of trying to zoom in further on ill-structured parts, describe the
actions and the information needed for them. WONDER implements this by
describing the high-level task hierarchy of workspaces, and by describing the
materials and tools within each workspace as a boundary for the ill-structured
work.

Balance between structure and freedom Whether or not WONDER imple-
ments the right balance between structure and freedom can not be said without
testing it. Two issues regarding this balance are described on page 92.

The way of working described in Section 4.4 clearly describes the iterative
approach that is encoded in WONDER. There is explicit support for starting with
a very rough sketch of the design and then adding more and more detail as it
becomes available.

WONDER also incorporates ambiguity and inconsistency where appropriate.
Table 4.4 shows how each type of representation gradually moves from a free
to a more structured description where appropriate. The way of supporting
makes explicit that inconsistencies should be allowed present in the design.
Supporting tools can show them, and thus provide guidance towards resolving
them.

Build on the analysis results Section 3.5.3 refers mostly to the task analysis
results obtained during the analysis phase of a project. These results provide
the input for the initial workspace hierarchies, as described in Section 4.4.1.

127

CHAPTER 4. A WORKSPACE-ORIENTED DESIGN REPRESENTATION

Multi-disciplinary design teams The way of controlling described in Sec-
tion 4.5 lists the design team members and their roles and responsibilities.
Where appropriate explicit references to these roles are also indicated in the
diagrams that are part of the way of working, for example in Figure 4.8. In ad-
dition, on page 93 it is also noted that each design team member needs to iden-
tify with the design representation. This has not been fully achieved. In the
discussion about the media of the model in Section 4.3.2 it has already become
clear that not all design team members will adopt the current representations
without hesitation. How well this really works will need to be tested.

Design representation The major requirement for the design representation
is to be usable. While this has been one of the goals when constructing WON-
DER, it is not possible to tell whether this has succeeded without testing it.

Requirement or suggestion In WONDER?
Include artifacts and activities yes
Include contextual information yes
Include support for ill-structured work yes
Balance between freedom and structuredness yes, needs testing
Build on the analysis results yes
Support multi-disciplinary teams yes, needs testing
Usable design representation unclear, needs testing

Table 4.6: Requirements and suggestions implemented in WONDER

4.8.2 Assumptions on the use of WONDER

In the previous section it is shown how WONDER addresses the requirements
and suggestions posed in Section 3.5.3. While this indicates that WONDER is
on the right track in solving the research questions posed in Section 1.3, using
WONDER on an actual case will show whether all the required parts fit together
into a workable whole that yields the results it is intended to.

Chapter 6 contains the description of using WONDER on such a real-world
case. In order to facilitate a proper evaluation of this case, this section poses
a number of assumptions about WONDER. Table 4.7 on the next page shows
these assumptions.

128

4.8. REFLECTIONS ON WONDER

Way of thinking
1 The model described with workspaces conforms to the mental model

of the users towards their work.
2 Each workspace allows the users to accomplish the goals associated

with the workspace.
3 The description of ill-structured work matches the perception of that

work by both the domain expert and participating users.
4 Explicitly allowing ambiguity and consistency in the design process is

beneficial.
5 The WONDER representations consist of the right ingredients: work-

space, material, action, tool.

Way of modeling
6 Text is a good medium for a model during the early design phase.
7 The evolution from free to structured information as indicated in Ta-

ble 4.4 works well.
8 No crucial information related to the early design process is kept out-

side of WONDER.

Way of working
9 The design activities described in Section 4.4 are a correct representa-

tion of the actual use of WONDER.
10 The different design team members can all work with WONDER.

Way of controlling
11 The roles defined in Table 4.5 match actual use of WONDER.
12 The domain expert shall be the team leader.

Way of supporting
13 Computer assistance is needed to work efficiently and effectively with

WONDER.

Other assumptions
14 The time taken to use WONDER is worth the results it yields.
15 Compared to tools currently in use a WONDER workspace description

provides at least the same level of support.

Table 4.7: Assumptions on the use of WONDER

129

CHAPTER 4. A WORKSPACE-ORIENTED DESIGN REPRESENTATION

4.8.3 Observations about WONDER

Before WONDER is put to the test in practice in Chapter 6, reflecting on WON-
DER yields some observations. For example, WONDER will likely work best on
large projects. In those projects the strategies for dealing with the work and
its associated decisions are not always clear. WONDER does not transfer well
to small problems, because these can often more easily be designed without
specific support, simply because there are less loose ends and design possibili-
ties. A large problem implies a large design space, and much more structuring
and organizing is needed. This means that the design team can less easily keep
track of all the design issues, and hence a design tool like WONDER will be a
useful tool in making the design explicit.

Using WONDER is just one step in the whole development process. This
process is a complex activity which requires the cooperation of people in sev-
eral disciplines, and which is interlaced with additional analysis and design
activities. The use of WONDER cannot be separated from these other activities,
even though it is described here in relative isolation.

Finally, compared with the design methods described in Section 3.3, WON-
DER brings together some of the best things of these methods. It will be inter-
esting to see how this combination works out in practice.

130

CHAPTER 5

Computer support for workspace design

It was made clear in the previous chapter that there is a need for computer
assistance when working with WONDER, the workspace oriented design repre-
sentation. In this chapter an example of such a system is presented and evalu-
ated. Recommendations for future implementations are given at the end of the
chapter.

5.1 Introduction

Section 4.6, in which the way of supporting WONDER is described, contains five
reasons for the need of computer support with WONDER. In summary, these
reasons are:

• manual maintenance of descriptions is often too tedious;

• manual version control does not work well;

• creating and maintaining relations between elements is too much work;

• creating overviews manually is hard and takes too much time;

131

CHAPTER 5. COMPUTER SUPPORT FOR WORKSPACE DESIGN

• checking for inconsistencies is hard and it is easy to make mistakes with
it.

5.1.1 Main areas of computer support for WONDER

These reasons clearly show that computer support is needed to work with
WONDER effectively. Three main areas of support are needed: editing, brows-
ing, and reporting.

Editing The functionality needed to edit workspace descriptions needs to be
focused primarily on ease of use. This is an important requirement because
editing needs to be done by all team members, and because editing should not
consume much time, instead leaving more time for design itself.

The functionality for editing needs to facilitate easy retrieval of the right
workspace description. Once the proper description is found, editing needs
to be straightforward. Besides text editing facilities, functionality is needed
to easily identify and insert components of a workspace, and to mark specific
parts of each component as needed. Examples of such markers include warn-
ing, which signify that the current description may cause problems later on
in the design process, and questions, which indicate that not enough informa-
tion is currently available to complete part of the description. Each change in
a workspace description needs to be documented, so that a history of changes
can be perused later. Mandatory entering of explanations for these changes
needs to be facilitated, but should also be as unobstrusive as possible. Finally,
results from editing should be available to all team members quickly to facili-
tate iterative design.

Browsing Browsing the current state of workspace descriptions is an impor-
tant activity which probably is used most often when working with WON-
DER. Functionality for browsing falls into two categories. First, navigation
between workspaces needs to be supported in several ways, such as through
an alphabetical list, and through hierarchicies mimicking the workspace struc-
ture. Navigation from one workspace description to another also needs to
be supported, for instance through references between workspaces. Second,
browsing a given workspace description needs to be supported. In particu-
lar, it needs to be easy to read the description and its history. Finding specific
components needs to be facilitated.

132

5.1. INTRODUCTION

Reporting In addition to browsing, functionality for creating reports is also
needed. The generation of automatic reports compliments browsing by bring-
ing issues to attention which can not easily be detected by browsing manually
through individual descriptions. Each of these reports needs to focus on a par-
ticular aspect of WONDER descriptions and their relations. Specific examples of
such reports include:

• Overview of all available descriptions. This overview can serve as a ta-
ble of contents to all descriptions. Optionally it can include versioning
information.

• Overview of workspace relationships. This overview shows all the rela-
tionships workspaces have with each other through the ‘contains’, ‘en-
closed in’, and ‘works with’ attributes. Inconsistencies in these relations
can also be shown.

• Overview of workspaces per material. This overview shows in which
workspaces each material is used.

• A list of warnings and questions marked in the descriptions, including
enough context of the description itself to quickly assess the warning or
question.

5.1.2 Requirements

The reasons for providing computer assistance mentioned above lead to the
following requirements for computer assistance:

• It should be easy to maintain for all design team members. In partic-
ular this implies that no specific markup commands should need to be
used, apart from those denoting the structure of the representation. All
markup, references, and overviews need to be generated automatically
from this description.

• Allow for sufficient markup and reference capabilities. Even though the
team members should not be bothered by specific markup, the descrip-
tions should still contain sufficient markup capabilities to show clearly
the structure and different types of information. This will facilitate com-
prehension and quick scanning of the descriptions.

133

CHAPTER 5. COMPUTER SUPPORT FOR WORKSPACE DESIGN

• Recent results should be available to all design team members. The de-
sign representation can only be useful when the most recent version is
always available to all team members.

• Provide automatic provision for version control. Version control needs
to be automatic. Team members should be prompted for their reasons
behind any change, and their explanations should be recorded along with
the changes automatically.

5.2 Computer support for WONDER

An example implementation for supporting working with WONDER is pre-
sented in this section. This implementation has been created as a research in-
strument to help carry out the case presented in Chapter 6. First, selections
for tools and platforms are made based on the three categories of requirements
presented above, followed by an overview of the design. Then, the example
implementation is shown, as are some examples of it in use and a brief set of
instructions.

5.2.1 Selection of tools and platforms

Browsing The combination of markup facilities and hypertext support sug-
gests use of a World Wide Web (WWW) browser, such as Netscape’s Navigator
or Microsoft’s Internet Explorer. The HyperText Markup Language (HTML)
that is used to display information on the WWW contains facilities for both
markup and hyperlinks [Rag97]. It is also widely used, which makes it eas-
ier for the design team members to navigate with it through the descriptions.
Use of the WWW also allows easy access to the descriptions from any of the
team members’ workplaces, regardless of platform and location.

Editing The choice for HTML as the presentation medium unfortunately goes
against some of the requirements for editing. Editing HTML codes is not easy, in
particular when a non-trivial structure, for example using nested tables, needs
to be created. This can be alleviated somewhat by providing templates, but
will remain tedious. Creating all the hyperlinks is even more tedious for a ca-
sual user who suddenly needs to know details such as file names and directory
structure. Apart from these issues, editing HTML simply takes too much time

134

5.2. COMPUTER SUPPORT FOR WONDER

away from the design process. These issues imply that either another presen-
tation mechanism is required, or that editing needs to be done in some other
format, which can be converted automatically into HTML. The latter approach
was taken with the prototype. A very simple text-based description was de-
fined, which can easily be converted into HTML automatically. An example of
this description is shown in Figure 5.2.

Version control was implemented using a set of standard Unix‘ tools collec-
tively known as the Revision Control System (RCS) [Tic85]. These tools allow
an unlimited number of revisions to be kept, easy retrieval of any version or
the differences between two versions, and they automatically calculate the dif-
ferences between versions. Furthermore, RCS allows comments to be added to
each version, and will prompt for this information whenever a new version is
created.

Reporting The system is implemented in Perl, which allows easy prototyping
and has excellent capabilities for text manipulation [WCS96]. In addition to
the overviews listed in Section 5.1.2, the conversion from simple text to HTML
is also implemented in this way. Only one command is needed to bring all
descriptions and overviews up to date after making changes to the text-based
description files.

5.2.2 Design

The design of the research instrument is kept as simple as possible, focussing
on flexibility and enabling rapid prototyping. It is fully based on the technolo-
gies described in the previous section.

Makefile The design is centered around a simple one-to-one translation of
source files into HTML files. An example of a source file is shown in Figure 5.2;
the corresponding HTML is shown in Figure 5.3. A standard Unix Makefile
drives this process, using rules to run the appropriate translation scripts. An
excerpt of the Makefile showing the rules to translate workspace and material
descriptions is shown in Figure 5.1.

Translation scripts The translation scripts, written in Perl, are straightfor-
ward. The input file is read and parsed, and then a HTML page is written based
on the parsed information. In addition to the translation itself, some links to
other information are also created, and the current version control status is also

135

CHAPTER 5. COMPUTER SUPPORT FOR WORKSPACE DESIGN

%.html: $(SRC)/%.workspace $(BIN)/workspace2html
$(BIN)/workspace2html $(SRC)/$*.workspace

%.html: $(SRC)/%.material $(BIN)/material2html
$(BIN)/material2html $(SRC)/$*.material

workspace-hierarchy.html: inventory.w $(BIN)/workspace-hierarchy
$(BIN)/workspace-hierarchy -s $(SRC)

Figure 5.1: Makefile (excerpt)

included. All the input files are parsed by the same software module, so that
consistency between for instance workspace and material source files can be
ensured.

The translation scripts also maintain several inventories; for instance for
materials or tools. These inventories are updated whenever new information is
found for them. For example, the file inventory.m contains the associations
to other materials in a material description. These updated inventory files will
trigger a rule in the Makefile which is shown at the bottom of Figure 5.1. A
separate script is then run to update the summaries and overviews based on
these inventories. Examples of these are shown in Section 5.2.4.

5.2.3 Examples of presentation and editing

To further clarify the use of simple text descriptions and a HTML based pre-
sentation, this section contains some annotated examples. Note that the actual
content of the examples is not relevant here.

Text based descriptions Figure 5.2 contains an example of a text based de-
scription for a WONDER workspace. Issues such as layout and order of the
items in the file are not important, because they will automatically be made
consistent during the conversion process.

The attributes of each description type are identified by keywords. A key-
word is preceded by a dot to distinguish it from normal text. Some of the
fields contain unstructured text, which will be reproduced ‘as is’ in the HTML
presentation of the workspace. Examples of these fields shown in the figure

136

5.2. COMPUTER SUPPORT FOR WONDER

.name Insert activity

.goal

Insert a new activity into the current plan, with respect to the
constraints of both the activities and the plan. Try to keep the
changes in the plan to a minimum.

.enclosed_in small-changes

.contains

.works_with delete-activity precedence-manipulation
activity-manipulation

.remarks

This workspace can only deal with insertion of a few activities at
the most. A new project should be inserted using a planning engine.

.materials

- m_activity

A new activity to be inserted (has just been created)

- m_activity, m_precedence, m_resource, m_skill

The existing activities and their precedence relations which
constrain the insertion of a new activity. In particular the
attributes which allocate resources and skills to activities.

.tools

- Create activity

a_create: a new m_activity. a_edit-attributes: of the new activity
The new activity will not be part of the plan after creation, but
needs to be inserted separately.

- Find room in plan

Support finding room for a new m_activity. Assign a m_resource to
the activity (based on the associated m_skill). Try to place new
activity at promising location in the current m_view

Figure 5.2: Text based workspace description (excerpt)

137

CHAPTER 5. COMPUTER SUPPORT FOR WORKSPACE DESIGN

are goal, context, and remarks. The three fields which define the relationships
with other workspaces are examples of structured fields. Each of these fields
contains a list of relevant workspaces, as indicated by their internal name. If
no relevant workspaces are needed, then the field is simply left blank.

The list of materials used in this workspace is not a simple structured field,
because additional information on the use of the material is needed in this
workspace. Materials are always itemized with a line starting with a single
dash. After the dash one or more materials are listed, followed by some con-
textual information. Note that a material can occur more than once if it is used
in different ways within the same workspace. For example, the workspace
shown in Figure 5.2 makes a distinction between an activity which is going to
be inserted in a plan versus the activities already present in that plan.

Each material is referenced by its internal name, and preceded by a special
code indicating it is a material. This explicit encoding allows better consistency
checking, and keeps the different namespaces for all WONDER elements sepa-
rated. Each material also has a brief description of its use in the workspace,
and an indication of the amount of items which will normally be present in the
workspace.

Tools are described in a similar itemized way. The unstructured description
of each tool contains references to actions which can be used to implement
(part of) the tool, and to the materials it can operate on. It also describes the
purpose and possibilities of each tool.

HTML presentation Figure 5.3 contains an example of the workspace descrip-
tion from Figure 5.2 as it is presented using HTML. In this presentation the
workspace description is shown in an ordered and consistent fashion. Differ-
ent parts of the description are separated by horizontal lines. The order in
which items are presented is fixed, and independant from the order in the text
files. The formatting of the presentation in tables makes it easy to locate all
information on the page. Hyperlinks to other descriptions are underlined, but
also have an indicator for the type of description they point to, for example a
‘W’ for a workspace description. This is particularly helpful for the tool de-
scriptions, where material and action links are both used in the same text.

5.2.4 Examples of overviews

Several overviews are generated automatically after changes have been made
to the individual descriptions. The purpose of these overviews is twofold. One,

138

5.2. COMPUTER SUPPORT FOR WONDER

Figure 5.3: HTML presentation of workspace description

139

CHAPTER 5. COMPUTER SUPPORT FOR WORKSPACE DESIGN

they allow easy access to the individual descriptions, and two, by rearranging
and summarizing information they make clear additional structure and con-
sequences which are not immediately apparent from the descriptions them-
selves.

Overview of all available descriptions This overview, shown in Figure 5.4,
primarily shows all available workspace, material, and action descriptions. It
only provides a simple alphabetically ordered list for each of these categories.
Some additional information can be presented in the list because of the use of
versioning tools. This makes it possible to show both the current version num-
ber and date of last change; also indicated is whether a description is currently
being worked on. The names of the descriptions are links to the description
page, while the version information provides a link to the version history of
the description.

Figure 5.4: List of all available descriptions (excerpt)

140

5.2. COMPUTER SUPPORT FOR WONDER

Overviews of workspace relations These overviews shows the relations be-
tween workspaces in several ways. These relations need not be consistent, be-
cause they are defined through the individual descriptions. For instance, one
workspace may list that it contains another workspace, while this other work-
space does not indicate that it is contained in the first. Such inconsistencies will
be visualized in these overviews.

In the first overview, all relations indicated in each workspace are summa-
rized in a single table. An excerpt of this table is shown in Figure 5.5.

Figure 5.5: Table of workspace relations (excerpt)

A second overview, shown in Figure 5.6, shows all workspaces using their
hierarchical relations. Several hierarchies can co-exist because there need not
be a single root workspace. To create the hierarchies, workspaces which do not
claim to be enclosed in other workspaces are collected. Each of these work-
spaces is considered to be the root workspace of a hierarchy. Then, for each of
these root workspaces, a hierarchy is created by following the contained field
in each workspace. Workspaces which claim to be enclosed, but are not in fact

141

CHAPTER 5. COMPUTER SUPPORT FOR WORKSPACE DESIGN

mentioned in any contained field are shown in a separate list as orphans.

Figure 5.6: Workspace hierarchy (excerpt)

A third overview, shown in Figure 5.7, shows the other relations between
workspaces. These relations are indicated in the works with relationship field.
There are two possible situations. First, if both workspaces indicate that they
work with each other, then they are considered to have an ‘exchange’ relation-
ship. This usually indicates a strong symbioses between the two workspaces.
Second, if only one of the two workspaces indicates the works with relation-
ship, then it is considered a ‘depend’ relationship. This usually indicates that a
workspace provides a service to one or more other workspaces. Both types of
relationships are shown in Figure 5.7.

Overview of workspaces per material The final overview, shown in Fig-
ure 5.8, shows workspaces per material. This overview connects the material
and workspace descriptions. All workspaces in which the material occurs are
listed for each material. Creating this overview accomplishes two goals. One,

142

5.2. COMPUTER SUPPORT FOR WONDER

Figure 5.7: Workspaces per material (excerpt)

143

CHAPTER 5. COMPUTER SUPPORT FOR WORKSPACE DESIGN

it shows which materials do not appear in any workspace. This can happen
when a material is initially created to serve as a workspace, but later removed
from the workspace because of a changed view on that part of the design. Two,
it can point to similarities between different workspaces, because of the use of
the same (set of) workspaces.

Figure 5.8: Workspaces per material (excerpt)

5.2.5 Search facilities

Searching through the descriptions in a flexible way provides a good means
for finding information in the design descriptions. A simple search facility is
included in example implementation, and shown in Figure 5.9. The search
mechanism allows searching by keywords, and presents a list of all matching
descriptions. The matched keywords are turned into links pointing at the rel-
evant places of the descriptions. The results for an example query are also
shown in Figure 5.9.

Two pre-defined searches are available. By convention warnings and issues
are marked with a special notation in the descriptions. Warnings are marked
with !! , and indicate potential problems or pitfalls with the current design
solution or its future implementation. Issues are marked with ?? , and indicate
design issues that have not been resolved yet. The use of these two default
searches makes it easy to locate those parts of the design which need further
attention. The results are shown in a manner similar to those in Figure 5.9.

144

5.3. EVALUATION AND RECOMMENDATIONS

Figure 5.9: Search facility including search results

5.3 Evaluation and recommendations

The system described in the previous section has been created as a research
instrument only. There are a number of obvious improvements, some of which
are outlined in this section. First, however, a brief evaluation of the use of this
implementation is described.

5.3.1 Evaluation of use

As described in Section 5.2.1, the components of the system were specifically
selected because of an ability to satisfy some of the requirements. Therefore it
may seem obvious that these requirements, such as having sufficient markup
capabilities or the need for having version control, have been fullfilled. This is
not automatically true for all requirements, though, and in particular ease of
maintenance had its problems.

The simple text format described in the previous section and shown in Fig-
ure 5.2 was not difficult to maintain, but still required too much low level
knowledge about the format and its underlying assumptions. For example,
the convention to prefix each reference to another description with a letter in-
dicating its type and an underscore is not immediately intuitive, and is easily
forgotten. Matters like this inhibited other design team members from making
their own changes directly: requests for changes were always communicated
to the team member who developed the research instrument.

The simple text format is not only to blame for a lack of maintainability; the

145

CHAPTER 5. COMPUTER SUPPORT FOR WORKSPACE DESIGN

fact that the source of the descriptions, i.e. the simple text files, and the des-
tination, i.e., the HTML pages, were separated also made maintenance harder.
When something which needs changing is found in a description, a number of
non-trivial things need to be done for the changes to be made. First, the set of
simple text files needs to be found. Then the correct file needs to be identified.
Next, a text editor needs to be started with the text file, and only then can the
changes be made.

In fact, the above description leaves out the use of version control, which
further complicates the maintenance process. The use of RCS as the version
control software greatly facilitates keeping any number of versions and anno-
tated differences between versions. The drawback of its use is that it is not inte-
grated into the editing part of the prototype, which means that a team member
who makes a change to a description will need to invoke the RCS tools manu-
ally to ensure that the changes are properly recorded. This puts an additional
burden on editing and is easily forgotten or ‘postponed’ when changes need to
be made quickly.

Finally, the current editing structure caused one other problem. The use of
simple text files made it convenient to use the name of each file as an identi-
fier for the descriptions. Other descriptions could then use this file name as
a reference which is translated into a hypertext link in the HTML presentation
of the description. This practice did not cause any problems until descriptions
needed to change their names to better reflect their actual purpose, causing
massive changes throughout all descriptions which referred to the original de-
scription. This can easily inhibit making such changes, especially when work-
ing under time pressure. As a result, additional confusion will occur later when
names do not always correctly identify descriptions.

5.3.2 Recommendations

Most of the problems with maintainability mentioned above can be alleviated
by integrating both presentation and editing into a single environment. Given
the good results with presentation and availability, use of WWW pages is a good
choice of platform for this integration.

Instead of using a simple text format separated from the presentation, items
can be added directly through the web pages, for instance using HTML forms.
Such an approach would also facilitate the stronger integration of version con-
trol into the editing system. An example screenshot of a system which could
provide this integration is shown in Figure 5.10.

146

5.3. EVALUATION AND RECOMMENDATIONS

Figure 5.10: Example of integrated editing system

147

CHAPTER 5. COMPUTER SUPPORT FOR WORKSPACE DESIGN

In this example a new version is currently being edited. The top widgets
allow the current set of changes to be committed, or to revert to the previous
version. A text box can be used for the comments on the changes that were
made for this version. Each individual item can be edited with the ‘Edit’ button
in front of it. When this button is pressed, the corresponding item changes. The
button changes to ‘Revert’, allowing a safe way back to the earlier version. An
input widget also appears, its shape depending on the data being edited. As an
example the context and enclosed in fields are being edited in the screenshot.

Providing such an integrated environment will facilitate editing of the de-
sign representation by all team members, and will enhance maintainability.

148

CHAPTER 6

Use of WONDER in a design process

This chapter contains a qualitative evaluation of WONDER when applied to a
real-world case: a shipyard planning system called SHIPSHAPE 1. Both the
process of using WONDER and the product resulting from it are included in
the evaluation. Finally, the assumptions brought forward in Chapter 4 are dis-
cussed in light of the results from the case.

6.1 SHIPSHAPE case description

This section contains an introduction to shipyard planning in general and the
specific issues in the SHIPSHAPE case. This is followed by a discussion of the
suitability of this case to a qualitative evaluation of WONDER.

6.1.1 Shipyard planning in general

Designing and building ships is a very complex business which requires a great
deal of planning. At a typically sized yard five ships may be constructed simul-

1SHIPSHAPE is short for the Shipyard Shared Planning Environment

149

CHAPTER 6. USE OF WONDER IN A DESIGN PROCESS

taneously, with each ship featuring at least 600 distinct high-level construction
and engineering activities. Organizing this vast amount of work is bound by
many constraints such as the available resources and their cost, dealing with
bottlenecks such as the ramp, the building process of a ship, and the delivery
of crucial parts such as the engines. The planners on a shipyard need to advise
whether or not new ships can be built, and they need to monitor progress of
the projects and manage available and requested capacity.

The key to planning in general is to schedule the activities in such a way
that all the constraints are met. Most often these constraints have to do with
the capacity of resources. These resources include the work force, but also el-
ements like the ramp, floor space and use of equipment such as cranes. In
shipyard planning work is often subcontracted to avoid critical problems. Sub-
contracting is expensive, though, and often inflexible. This makes it a less de-
sirable solution. By properly managing capacity, optimal use can be made of
the workers at the yard, thus saving money and retaining flexibility.

This emphasis on optimal use of the workers also indicates the need for
progress monitoring. Unexpected delays or problems are easily encountered
and can have severe consequences for the capacity planning. Closely moni-
toring progress of each project can help to predict and avoid many of these
problems, but this is not current practice because progress monitoring is not
well supported with current tools.

6.1.2 SHIPSHAPE issues

The goal of shipyard planning is to support the main process in a shipyard:
the design, engineering, and construction of ships. To accomplish this the pro-
duction control department of a yard controls this process by giving directions
to the other departments of the yard. This control is complicated by a number
of problems which will occur: internal deadlines are missed; pressure mounts
near the end of the project to get everything done in time; material or informa-
tion is not available at the right time; and capacity allocation is erratic.

The issue here is that all of these problems change the initial plan. The
key is not to disallow or ignore changes to the plan, but to facilitate making
changes to the plans all the time. Making all the decisions on the yard explicit
in the plans and then coordinating the activities in the yard based on the plans
will help to create more reliable plans, and thus a more reliable production
process. The next section explains how this was reflected in the design created
with WONDER.

150

6.2. SHIPSHAPE’S DESIGN IN WONDER

Another issue is that current planning tools are not well suited to ship-
yard planning. This is evident in two ways. First, current planning tools don’t
recognize the special characteristics of some of the resources in a shipyard.
The best example of this is floor space. Not only do some activities need floor
space, but they also need particular spaces depending on other resources such
as cranes or on other parts of the ship under construction. Changing the order
in which parts of a ship are assembled can have significant impact on the use of
floor space. Second, current planning tools don’t recognize the different goals
which planners need to accomplish, and the fact that different tools are needed
to support each of those goals.

6.1.3 A good case for applying WONDER

A system for shipyard planning provides a good case for using WONDER. Ship-
yard planning is a good example of ill-structured work. There are no standard
recipes for solving planning problems. The many dependencies and relations
within a plan can easily cause a small change in one part of the plan to have
significant effects in other parts. In addition, planning is also based on value
judgments of the planners. Not all criteria and constraints are easily quanti-
fied, and judging which solution is best given the current situation of the whole
yard is typically the responsibility of the planners. The issues mentioned in the
previous section provide good challenges for WONDER.

Furthermore, a planning system is far from a small toy system. It is large
and complex enough to allow several different but interconnected workspaces
to surface in the design.

Finally, each yard already has some kind of support for the planning pro-
cess, ranging from a plan board on the wall to a collection of computer tools. It
will be interesting to see how WONDER compares to these tools. Given the is-
sues and WONDER’s aim, the design should result in more focused workspaces.

6.2 SHIPSHAPE’s design in WONDER

This section contains an overview of the WONDER design for the SHIPSHAPE
case, listing the workspaces and materials and focusing on an example of joint
evolution of a workspace and material throughout the design. It is an example
of real-world use of WONDER and it serves as background information for the
remainder of this chapter. The actual design representations for workspaces
and materials can be found in Appendix C.

151

CHAPTER 6. USE OF WONDER IN A DESIGN PROCESS

6.2.1 Describing a WONDER design

Describing the WONDER design of the SHIPSHAPE case in the confines of this
thesis is not easy. Two important aspects of WONDER conspire to make this dif-
ficult: the hyperlinks between representations and the evolution of the design
over time.

Representing hyperlinks Hyperlinks link all of the WONDER representations
and several overviews together. Section 4.6 argues the need for computing
support to cope with this in an effective way. The example implementation
shown in Chapter 5 makes clear that a good and inclusive overview of all the
relations and dependencies can only be formed by browsing and exploring the
design. In Sections 6.2.2 and 6.2.3 some of these relations will be shown using
figures and tables.

Describing time There is no finished SHIPSHAPE design made in WONDER.
Instead the design grows within the WONDER representations initially, then
gradually moves to other design activities and artifacts as described in Sec-
tion 4.7. This is not a discrete process but rather a evolutionary move from just
a set of goals to a more developed description and eventually an implemented
system. As a result it is hard to present the SHIPSHAPE design in WONDER.

To explain this further, a schematic time line of the design process is shown
in Figure 6.1. At the start of the design process diagrams are created as dis-
cussed in Section 6.3.1. Next, WONDER representations are used to create the
initial design. As a separate effort a data model for shipyard planning was
developed. Bringing this model together with the WONDER representations re-
sulted in a number of scenarios, followed by a prototype implementing them.
Meanwhile, the WONDER representations were kept somewhat up to date. Not
being the only focus of the design team anymore, maintenance slowly petered
out over some time, with the WONDER representations being updated and re-
ferred to less and less as the design was fleshed out more and more in the other
design tools.

Selecting a point in time In the remainder of this section the SHIPSHAPE
design will be described as it was at the time of the bold circle shown in Fig-
ure 6.1, just after creating the WONDER representations. At this point in time
the design team felt it could move on to additional steps in the design process

152

6.2. SHIPSHAPE’S DESIGN IN WONDER

Diagrams WONDER

Scenarios Prototype

WONDER

Data model

Start

Figure 6.1: SHIPSHAPE design timeline

such as working on the user interface while still having a complete and coher-
ent set of representations. As such it shows the SHIPSHAPE design in WONDER
in its most complete form before additional design activities were carried out.

As a consequence of selecting this particular point in time, some of the de-
scriptions in Sections 6.3 and 6.4 will refer to workspaces or materials not de-
scribed in this section. For example, the inclusion of the workspaces Maintain
floorplan and Determine construction order was triggered by the yard events de-
scribed for the presentation. At that point we found out that these particular
problems would benefit from special solutions, i.e. taking into account the lay-
out of the floor and the way in which separate parts of the ship would be fitted
together. Initial analysis had not shown this specific need. The background of
the Capacity view workspace is explained in more detail in Section 6.3.4. It too
is not present in the snapshot below while it is present in the presentation. Fi-
nally, we changed one name of a workspace, Small changes in the presentation
so that it better reflected its purpose: Maintain activities.

6.2.2 SHIPSHAPE workspaces

Table 6.1 on page 155 shows the workspaces in the SHIPSHAPE design and
were the full workspace representations can be found. Figure 6.2 on the next
page contains a schematic overview of the same workspaces. Two types of
relationships have been drawn. Solid lines represent the enclosed in and con-
tains relationships. Gray lines represent the works with relationship, with the
origin of the arrow at the workspace which mentions the relationship.

Overall the hierarchy is self-explaining. The only surprise is that Planning
engine is contained in both Insert plan and Fix problems. This makes sense be-
cause in both workspaces complex changes to the plan may need to be made,
which is what the planning engine supports. The three maintenance work-
spaces are not part of the main hierarchy because they are not tied to the goals

153

CHAPTER 6. USE OF WONDER IN A DESIGN PROCESS

P
rogress

m
onitoring

Insert plan
F

ix problem
s

M
aintain plan

C
heck plan

S
m

all changes

A
ctivity

m
anipulation

Insert activity

D
elete activity

P
recedence

m
aintenance

S
olution finding

P
lanning engine

M
aintain

plan versions
M

aintain view
s

M
aintain scopes

P
lan validation

S
tatus inform

ation

Figure
6.2:H

igh-levelhierarchy
ofw

orkspaces
for

S
H

IPS
H

A
P

E

154

6.2. SHIPSHAPE’S DESIGN IN WONDER

of the planners directly.
The works with lines paint a more complex picture. There is a lot of in-

terdependence between the workspaces in the Small changes, for instance. In
fact, at a later stage in the design these four workspaces were merged back into
one workspace called Maintain activities, as is discussed on page 166. The main-
tenance workspaces are connected to the rest of the design with works with
lines. The explicit link between Solution finding and Status information is interest-
ing. Status information is an important component of fixing problems. Other
workspaces often have specialized status information tools though, which lead
to the removal of the status information workspace as discussed on page 166.

The SHIPSHAPE design and shipyard planning Several design issues are
raised in Section 6.1.2. It is clear from the workspace hierarchy that SHIP-
SHAPE is designed differently from other planning tools, which usually take
something like the small changes workspace in combination with a strong fo-
cus on views as their starting point. In the SHIPSHAPE design the goals of the
planner are more central to the design. Workspaces such as Small changes and
Progress monitoring show that adjusting the plan and monitoring the deviations
with reality is designed into SHIPSHAPE.

Workspace Workspace
Activity manipulation Maintain views
Check plan Plan validation
Delete activity Planning engine
Fix problems Precedence maintenance
Insert activity Progress monitoring
Insert project in plan Small changes
Maintain plan Solution finding
Maintain plan versions Status information
Maintain scopes

Table 6.1: SHIPSHAPE workspaces

6.2.3 SHIPSHAPE materials

Table 6.2 on the following page contains an overview of the materials. An
example of these representations can be found in Appendix C. The relations
between workspaces and materials are shown in Table 6.3, indicating which
materials show up in which workspaces.

155

CHAPTER 6. USE OF WONDER IN A DESIGN PROCESS

Material Material
Activity Plan version
Actual data Precedence relation
Capacity Allocation Project
Deliverable Resource
Deviance Skill
Plan domain Solution
Plan problem View
Plan scope

Table 6.2: SHIPSHAPE materials

Some of the materials, such as Plan scope and Plan version are used in
many workspaces. This correlates with the works with relations shown in
Figure 6.2. Many workspaces use the scope and version concepts to delimit
which part of the plan is shown, causing these materials to show up in many
workspaces. Some of the materials are very specialized, only appearing in one
or two workspaces. For example, Deviance and Actual data only appear in
Progress monitoring. This could be an indication that this material is very spe-
cialized, or that is should really be part of a tool.

6.2.4 Joint evolution of workspace and material

The evolution of a WONDER design can not be captured easily by describing the
representations at some point in time. In this section an example of evolution is
given for the workspace Maintain scope (see page 221) and the material Scope
(see page 223). The workspace and the material are obviously linked, which
makes it interesting to view their evolution together.

A total of 12 revisions can be identified in which either one or both of the
representations was changed. Table 6.4 on page 158 lists these revisions. It
shows the revision number along with a description and explanation of that
revision. The two columns marked ‘W’ and ‘M’ indicate whether the work-
space or the material changed in that particular revision.

The table shows that changes can start in the workspace as well as the ma-
terial. For example, the changes made to the material in revision 4 appear in
the workspace in revision 5. The changes made to the workspace in revision 7
appear in revision 8 of the material. This illustrates the possibility to have an
inconsistent design in WONDER. Also, the use of questions is illustrated in re-
visions 9 and 11.

156

6.2. SHIPSHAPE’S DESIGN IN WONDER

Activitymanipulation

Checkplan

Deleteactivity

Fixproblems

Insertactivity

Insertprojectinplan

Maintainplan

Maintainplanversions

Maintainscopes

Maintainviews

Planvalidation

Planningengine

Precedencemaintenance

Progressmonitoring

Smallchanges

Solutionfinding

Statusinformation

A
ct

iv
ity

×
×

×
×

×
A

ct
ua

ld
at

a
×

C
ap

ac
ity

A
llo

ca
tio

n
×

D
el

iv
er

ab
le

D
ev

ia
nc

e
×

P
la

n
do

m
ai

n
×

×
×

×
×

×
P

la
n

pr
ob

le
m

×
×

×
P

la
n

sc
op

e
×

×
×

×
×

×
×

×
×

×
×

P
la

n
ve

rs
io

n
×

×
×

×
×

×
×

×
×

×
P

re
ce

de
nc

e
re

la
tio

n
×

×
×

P
ro

je
ct

×
R

es
ou

rc
e

×
S

ki
ll

×
×

S
ol

ut
io

n
×

×
V

ie
w

×
×

×

Ta
bl

e
6.

3:
SH

IP
SH

A
P

E
m

at
er

ia
ls

an
d

w
or

ks
pa

ce
s

157

CHAPTER 6. USE OF WONDER IN A DESIGN PROCESS

Rev. Changes and explanation W M
1. Initial version of Maintain scope. At this time it is called ‘plan

scope’.
×

2. The type of relation with Main is made more clear. ×
3. Initial version of Scope. A link to this is added in Maintain scope. × ×
4. At this time the representations were discussed with the domain

expert. Based on this discussion the name of Maintain scope was
changed in ‘Maintain plan scopes’. In this discussion it also be-
came more clear that a Scope would be a tool to limit the working
area, and that it would be the primary selection tool. To facilitate
this a ‘time window’ was added to the associations.

× ×

5. The workspace name is finally changed to Maintain scope. The
changes made to Scope in revision 4 are now reflected in the
workspace: a relation with Plan version is defined to make clear
that their is a strong relation between a selection and version-
ing, ‘Plan elements’ are defined as a material, and the ‘Maintain
scopes’ tool is defined to create and delete scopes.

×

6. ‘Project’ and ‘Time window’ are added to the associations in
Scope. This is also reflected in Maintain scope, where they are
identified as plan elements. The ‘Maintain scopes’ tool is split in
two separate tools for creating and deleting scopes.

× ×

7. A ‘Select scope’ tool is added to Maintain scope. This results in
‘time window’ now being seen as a constraint or a property of the
scope, not as an element.

×

8. The changes made in revision 7 are now reflected in Scope. ‘Time
window’ is now removed from the associations, and added to the
attributes list, along with others such as ‘name’, ‘selection crite-
ria’, ‘activities’, and ‘resources’. Also, the challenges for properly
visualizing a scope are made more explicit.

×

9. A question is added to Maintain scope. The manipulation of
scopes is not clearly described in the functional specifications
[Guy95b].

×

10. In response to changes made in revision 8, a tool is added to Main-
tain scope which shows which elements of the plan are part of the
scope.

×

11. The question posed in revision 9 is answered. New tools such as
intersect scopes and join scopes are added.

×

12. Both Maintain scope and Scope are further refined. Attributes
and tools are made more clear and more precise.

× ×

Table 6.4: Revisions of Maintain scope and Scope

158

6.2. SHIPSHAPE’S DESIGN IN WONDER

6.2.5 The WONDER representations

Actual use of the representations can be compared with the formal descriptions
in Section 4.3.3.

Workspace representation For the most part the workspace representation
was used in the same way as described in the theory. Most significantly, the
interaction field was not used much. Often not enough detail was known yet
to propose a particular interaction strategy. This fits with the idea that think-
ing about specific interaction elements is postponed until the WONDER design
nears completion.

Two additional fields were added, with the information initially appearing
in the remarks section. A design alternative is a description containing text
and graphics. It describes how a particular workspace or material might be
represented on the screen, or what kind of alternatives could be used to solve
a particular issue with a workspace. As such they provided an informal imple-
mentation of Design Space Analysis. A scenario is used in preparing the pre-
sentation described in Section 6.4.1. These scenarios were built on a combina-
tion of common events taking place on a ship yard and particular workspaces.
As such they were building on the workspace descriptions, while providing a
real-world usage example.

Material representation The material representation was used according to
the theory description. No deviations were observed.

Action representation The action representation was not used much. In fact,
after some initial trials, this element was pretty much abandoned. The reason
for this is that there is simply little added value in using these representations
at this stage in the design process. They require too much detail that simply is
not important yet.

Consider as an example the action representation shown in Figure 6.3 on
the following page. There is not much useful information in this representa-
tion. In fact, the remarks are quite generic and also fairly obvious for a ‘create’
action. This makes the representation nothing but a placeholder of question-
able value which will not become more useful until later in the design process.
An explanation is that actions are either very trivial, such as select and start,
or they are more complex, in which case their implementation may depend
strongly on the context and they will likely be described as tools.

159

CHAPTER 6. USE OF WONDER IN A DESIGN PROCESS

Goal To support creation of a new instance of a material
Extensions (none)
Remarks Creating something usually has two implications:

1) It should be put somewhere. This also opens up the ques-
tion whether more elements can be created at the same time,
and how this will be handled.
2) Its attributes have to be set in some way. This can be done
simply by editting its attributes, but it could also be done by
context. For instance, because another object is selected, it
will be an attribute of the newly created object.

Figure 6.3: Example action ‘create’

6.3 WONDER in use

The way of working with WONDER is described in Section 4.4. Working with
WONDER requires three sets of activities to be carried out a number of times:
finding workspaces, assessing workspaces, and refining workspaces. In this
section the use of these three sets of activities is described. Each is also com-
pared to the task diagrams found in Section 4.4. The combined effects of as-
sessing workspaces and refining workspaces on the evolution of the design are
described separately. Finally the individual activities are discussed, and the
experiences of the design team are presented.

6.3.1 Finding workspaces

Section 4.4.1 contains a description of the process of finding workspaces. Two
distinct phases are recognized. The first phase, in which workspaces are uncov-
ered based on material collected during analysis, is described below. The sec-
ond phase is discussed as part of the assessment of workspaces in Section 6.3.3.

Use of analysis results The basis for finding workspaces is to use the ma-
terial collected during analysis. In particular the hierarchy of goals and ob-
jectives provides a good starting point. The results from the analysis of the
shipyard planning activities at a particular yard2 are described in three docu-
ments. These documents, described below, have served as the input for finding

2IHC Sliedrecht, located in The Netherlands

160

6.3. WONDER IN USE

the initial set of workspaces. Table 6.5 provides a summary of their contents.
The results found at this yard where later verified against several other yards,
but no significant differences were found [Guy01].

The first document contains a broad sketch of the problems found during
analysis and the proposed improvements in five major areas [Guy95a]. This
document deals with the planning for the company as a whole, and lacks the
view of the planners. It does identify a number of high level objectives for the
yard, and provides context for these objectives. A number of important plan-
ning artifacts, e.g. activity and resource, are also described in this document.

The second document contains a list of functional specifications [Guy95b].
Even though this document is aimed at the software engineer who needs to
implement the core functionality for the system, it does provide useful infor-
mation for a workspace based design. Specifically, descriptions of the objects
to be used are very useful as an inventory of materials, while the description
of the functionality hints at both objectives and tools.

The third document contains a task analysis of the more important parts
of the planning process [Guy95c]. The task analysis contains a number of task
hierarchies for the most important planning objectives. Each hierarchy gives
a good indication of the important objectives and sub-objectives for each of
these important events. Each hierarchy is also accompanied by a list of peo-
ple responsible for each task, making it very easy to place the activities in the
organization as a whole.

Document Focus Objectives Context Materials
Broad sketch Whole yard High-level Yes Few
Functional specs Core functional-

ity for SE
Some hints No Yes

Task analysis Planners Yes, but not com-
plete

Yes No

Table 6.5: Contents of analysis documents

Workspace discovery The initial discovery of workspaces followed naturally
from an examination of the analysis results. Initially, diagrams were used in-
stead of the WONDER representations. This was not a conscious decision. Some
doodling while examining the analysis results led to these diagrams. This
does illustrate the fuzzy boundary between analysis and design; without con-
sciously starting the design activities, some had already taken place.

161

CHAPTER 6. USE OF WONDER IN A DESIGN PROCESS

The diagram was created to cluster high-level goals of shipyard planning
according to the main processes taking place in a shipyard. This clustering
was done visually, as can be seen in part from such a diagram in Figure 6.4. In
this diagram the clusters of related goals are indicated by broken lines. This
clustering provides a crude encoding for the three workspace relationships in
a WONDER representation. The strength of some of these relations is shown
by thicker lines between goals, thus providing some information on context.
Additional contextual information is also encoded in the rectangles, which in-
dicate the context for a cluster of goals.

Figure 6.4: Part of an early design diagram

It is interesting to see that these diagrams are not part of WONDER theory.
According to the theory, workspace descriptions need to be made as soon as the
first workspaces are formed. The information captured in the diagrams does
conform to the information normally captured during the creation of WONDER
workspace descriptions. The goals and subgoals are the primary attributes of
the workspaces, and some context and the relations between workspaces are
also indicated. It is primarily the form of the description that is different.

The preference for these diagrams over the workspace descriptions results
from the diagrams providing a very light-weight description, while at this
stage holding all needed information. Such a light-weight description proved

162

6.3. WONDER IN USE

to be quite beneficial, because many changes were made in this stage of the
design. Furthermore, because of the compact notation all of the design could
be kept on a few pages, which made it easy to keep an overview of the de-
sign. Finally, the diagram also was a great tool for discussing the design with
shipyard planners, precisely because it was light-weight: it did not look com-
plicated. Figure 6.5 shows the annotations after such a round of discussions.
Use of these diagrams facilitated an efficient start of the design process and the
information contained in them could easily be encoded in WONDER’s represen-
tatations.

Figure 6.5: Design diagram with annotations

6.3.2 Evolution

After finding the initial set of workspaces the design process continues with an
iteration of assessing and refining workspace descriptions. The evolution of the
design from the initial starting point onward is reflected best by the combina-
tion of these two activities. This section provides an overview of the evolution
of the design, while the following two sections contain specific examples of the
individual activities.

The effects of the iterative process can be seen by considering the changes

163

CHAPTER 6. USE OF WONDER IN A DESIGN PROCESS

to all representations in a structured manner. Each change in the descriptions,
as recorded in the version control system, can be attributed to one or more of
the following categories:

Result of an assessment (a) Based on the task structure in Figure 4.7, an as-
sessment will mostly be indicated by the removal or introduction of a
workspace. Removal of a tool is also an indication of assessment, but the
introduction of a tool can be the result of either assessment or refinement.

Result of refinement (r) According to the task structures in Figure 4.8 and Fig-
ure 4.9, refinement is indicated either by the addition of subsequent de-
scription elements, or by meaningful changes in current descriptions, es-
pecially when previously noted questions or warning disappear at the
same time.

Insignificant changes (i) Changes insignificant for the design. This usually
includes spelling corrections, formatting fixes, and minor reformulations
of the text.

Mapping these three categories of changes over time for each of the WON-
DER representations can provide insight into what way WONDER supports the
evolution of the design. This mapping is shown in Table 6.6 on the facing page.
In this table the days worked on the design are mapped against the workspace
representations of the case, showing the types of changes each workspace has
gone through.

Two observations can be made about the pattern of the changes. First, on
a given day, changes occur in many representations, or only in a few. This can
be explained by the fact that some changes have profound effects on the whole
of the design, affecting a large number of representations in some way, while
specific detailed work on a representation can be seen as isolated from the rest
of the design. Second, the occurrences of the massive changes diminishes as the
design progresses in time, which indicates a convergence in the design process.

6.3.3 Assessing workspaces

While the previous section provides an overview of the evolution of the design,
it is also instructive to look at the two processes responsible for this evolution
in more detail. The next section contains examples of the refinement process.
In this section some specific examples of the assessment process are described.
During assessment, workspaces can be added to and removed from the design.

164

6.3. WONDER IN USE

da
ys

1
2

3
4

5
6

7
8

9
10

11
12

13
14

A
ct

iv
it

y
m

an
ip

ul
at

io
n

r
r

ir
r

r
ir

C
he

ck
pl

an
r

i
r

i
D

el
et

e
ac

ti
vi

ty
r

r
a

ir
i

Fi
x

pr
ob

le
m

s
r

i
ai

i
In

se
rt

ac
ti

vi
ty

r
r

r
r

r
r

i
i

In
se

rt
pr

oj
ec

t
r

r
r

r
r

r
i

M
ai

n
r

r
i

i
a

r
M

ai
nt

ai
n

sc
op

e
i

i
i

r
r

r
Pl

an
va

lid
at

io
n

r
r

r
r

i
Pl

an
ni

ng
en

gi
ne

r
r

ir
ir

r
ir

Pr
ec

ed
ec

e
m

an
ip

ul
at

io
n

r
ir

r
r

r
ir

i
Pr

og
re

ss
m

on
it

or
in

g
ir

ir
ir

Sm
al

lc
ha

ng
es

r
r

i
i

So
lu

ti
on

fin
di

ng
r

i
ir

r
i

St
at

us
i

r
r

ir
a

i
a

Ve
rs

io
ni

ng
ir

r
i

r
r

i
i

V
is

ua
liz

at
io

n
r

ir
r

i
da

ys
(c

on
ti

nu
ed

)
15

16
17

18
19

20
21

22
23

24
25

26
27

28
A

ct
iv

it
y

m
an

ip
ul

at
io

n
r

r
r

i
C

he
ck

pl
an

r
D

el
et

e
ac

ti
vi

ty
ir

Fi
x

pr
ob

le
m

s
r

In
se

rt
ac

ti
vi

ty
ir

r
In

se
rt

pr
oj

ec
t

r
M

ai
n

i
r

a
M

ai
nt

ai
n

sc
op

e
i

r
r

r
Pl

an
va

lid
at

io
n

r
r

r
Pl

an
ni

ng
en

gi
ne

i
r

r
Pr

ec
ed

ec
e

m
an

ip
ul

at
io

n
r

Pr
og

re
ss

m
on

it
or

in
g

r
r

r
Sm

al
lc

ha
ng

es
a

So
lu

ti
on

fin
di

ng
i

r
r

r
St

at
us

r
Ve

rs
io

ni
ng

r
r

i
r

i
V

is
ua

liz
at

io
n

r
ir

i
r

Ta
bl

e
6.

6:
C

at
eg

or
iz

at
io

n
of

ch
an

ge
s

to
de

si
gn

re
pr

es
en

ta
ti

on
s

165

CHAPTER 6. USE OF WONDER IN A DESIGN PROCESS

Workspace to tools to workspace One noteworthy change instigated by dis-
cussions with real planners concerns the ‘small changes’ cluster of workspaces.
Initially the small changes workspace was split into a number of smaller work-
spaces associated with the specific small changes that can be made to the plan,
e.g., insert new activity and maintain precedence relations.3 This seemed a logi-
cal choice, because each of these changes required somewhat different tools
and some of these tools could be fairly complex. Discussion with planners re-
vealed that they did not find this split logical at all; these workspaces belonged
together and would be used interchangeable. Given the amount of overlap the
four workspaces were merged back together again into small changes.

Removing a workspace The status information workspace was removed after
discussion between the interaction designer and the domain expert. The ini-
tial objective of this prospective workspace was to provide status information
on the plan. After a number of iterations we found it increasingly harder to
make this workspace more concrete: what kind of status information would
need to be displayed and what tools, if any, would be needed? Finally we real-
ized that status information is always related to a particular objective and that
just “getting status information” didn’t make sense without an objective. Al-
ready all kinds of specific status-related items had found their way into other
workspaces, so we simply abandoned the status information workspace.

Tools become a workspace The maintain scopes workspace provides an exam-
ple of a common set of tools turned into a workspace. A scope in SHIPSHAPE
is a selection of activities and precedence relations in the plan. Analysis of
current practice had not revealed such an explicit concept and hence no such
workspace was added initially. As the design was progressing and workspace
descriptions were getting more complete, similar tools were introduced in a
number of workspaces to be able to deal with a set of activities at once. Instead
of adding the same tools to each of these workspaces, it made more sense to
simply create a new material Scope and a workspace to maintain them: main-
tain scopes.

3Their representations are still present in Table 6.1 and Appendix C for easy reference.

166

6.3. WONDER IN USE

6.3.4 Refining workspaces

Each of the workspaces was also continuously refined and revised, both based
on discussion between the interaction designer and the domain expert and
based on the emerging relations between workspaces.

Dropping a workspace from the design At first there was a workspace called
Solution finding in the design. The goal associated with this workspace was to
facilitate finding solutions for specific planning problems with the aid of an
automated planning engine. For instance, the planning engine might suggest
to move activities or schedule overtime in order to solve a problem with over-
allocation of a resource. Originally, such suggested solutions were to be pre-
sented with the Solution material. While further refining this workspace, it
became apparent that the concept of a ‘solution’ was not well defined at all.
Upon further investigation a ‘solution’ turned out to be a combination of a
Plan version and a Plan scope, both of which were already well-described in
the design. This conclusion led to the decision to drop the ‘solution’ concept
altogether, and use the already familiar scope and version concepts instead to
represent the same information. The functionality of the Solution finding work-
space could then be moved to the Planning engine workspace.

Uncovering missing workspaces Several ‘views’ on the plan data were not
initially included in the design. Views provide an appropriate visualization of
a plan. Examples are the GANNT view which shows activities and their rela-
tions on a time line, and the capacity view which shows the allocation of capac-
ity of resources over time. Initially there was a workspace maintain views with
the associated goal of handling the creation and manipulation of these views.
This workspace was written on the assumption that these views would be used
to display information only. This is much too limited because the views also
provide a good starting point for plan manipulation and investigation. These
omissions in the design were detected during discussions with the participat-
ing users as part of a workspace refinement cycle. The most important views
were turned into workspaces themselves, to be used from other workspaces
through the works with relationship.

The role of ambiguity and inconsistency In general allowing ambiguity in
WONDER’s representations is positive. It allows for quick data entry even when

167

CHAPTER 6. USE OF WONDER IN A DESIGN PROCESS

not all information is clear yet. This makes gradual progression easier, as all
information can be kept in the same place.

One drawback of allowing ambiguity in the representations is that the am-
biguity can sometimes be confusing. After a few days some descriptions are
simply not clear, and in this case the issue leading up to the description needs
to be revisited. This happens regardless of allowing ambiguity in the represen-
tations, but now it is more explicitly part of the design process.

Allowing inconsistencies in WONDER’s representations is a big help, be-
cause it permits the design team to focus on a single representation at the time
and forget about the big picture for a bit. This opens up a bigger design space
as more alternatives are considered. It also takes some pressure from the de-
sign team, which is then more free to concentrate of the design instead of on
the consistency. At a later time making the design consistent becomes a prior-
ity and all of the concentration can go to that topic. For example, Figure 5.8 on
page 144 shows an inconsistency where a material is not mentioned within any
workspace.

6.3.5 Design team

This section provides an introduction to the design team of SHIPSHAPE, and
the mapping of roles onto team members as described in Section 4.5. Further-
more, the design team is evaluated in part by looking at the case and in part by
reflecting on HCI theory presented in Section 3.4.

The design team members The design was primarily created by two peo-
ple. The author of this thesis was one of them, practicing action research as
described in Section 1.4.3. He is familiar with WONDER, user-centered design,
user interface design and programming. The other designer is doing research
on shipyard planning. In addition, he also worked on a shipyard office while
working on his MSc. thesis [Guy92]. A student from Delft University of Tech-
nology helped implement parts of the design as part of a student assignment,
and also gave valuable technical feedback on aspects of the design. In addition
we also frequently consulted a planner working at a shipyard and a director of
a non-profit organization aimed at introducing innovation in shipyards.

Mapping roles onto team members The mapping of the roles onto team
members is shown in Table 6.7 on the next page. With the design team be-
ing so small, two team members had to take on more than one role. The match

168

6.3. WONDER IN USE

between skills of team members and available roles was, as it turned out, some-
what unfortunate. Some of the side effects of this are discussed below.

Person Roles
Researcher Domain expert, Project manager, Software engineer
Researcher Interaction designer, Visual designer
Student Software engineer
Planner and Director Participating users

Table 6.7: Role assignment in SHIPSHAPE design team

The planner and director were only available on occasion, so their role was
limited to that of the participating user; all other roles would have cost them
too much time. The double assignment of the software engineering role was
caused by two things. First, the student did not join the design team right from
the start. Second, one of the researchers already had a clear view of some of
the software engineering issues based on his earlier research.

Team leader According to WONDER the domain expert should be the team
leader. In the SHIPSHAPE case this was not strictly observed. Two reasons led
to a sometimes confusing situation. First, in this case the interaction designer,
having created WONDER, also was seen as the team leader at some times. Sec-
ond, the domain expert was also involved in another project, and could not
always pay full attention to the SHIPSHAPE project. As a result, there was con-
fusion sometimes over who should do what, and whether something was good
enough or not. In a few instances the interaction designer made some decisions
which were later overruled by the domain expert based on knowledge of the
domain. This lends support to making the domain expert the team leader.

Evaluation The particular mapping of roles in this case did have some draw-
backs. For instance, with three designers having a software engineering back-
ground, assigned or otherwise, there was a strong focus on software engineer-
ing topics. No design ideas were thrown out later because of software engi-
neering evaluation comments. This seems to indicate that the design space
has not been explored well enough. It is plausible that only those ideas ap-
pearing to make some sense from a software engineering point of view have
been explored. In other words, the software engineering knowledge within

169

CHAPTER 6. USE OF WONDER IN A DESIGN PROCESS

the primary design team members likely filtered some design solutions before
they could come up for more general consideration. It appears to be beneficial
to have more diverse design team members, which is an obvious conclusion
given the multi-disciplinary nature of the design work.

Another problem which was encountered is caused by having a person be
assigned to more than one role. When this happens, the communication be-
tween those roles becomes mostly implicit. This can cause problems when
decisions need to be refined, as there often will not be a record of the decision.
Also, by leaving communication implicit, arguments are not always tested very
well, resulting in an increased chance that a decision is wrong. An example that
illustrates this issue is the fact that some views were initially forgotten in the
design (See page 167).

Another example of the latter problem can be illustrated with the Scope
concept in the design. The domain expert had one view of this concept, and
cleared it internally and implicitly with his software engineering role. The in-
teraction designer had another view of this concept, and cleared it implicitly
with his visual designer role. The two views on the concept were not identical,
however. Fortunately this mismatch could be resolved early in the design, but
it goes to show that verbalizing the design is an important safeguard.

Despite these problems, the design team was happy to use the representa-
tions to describe the design. The representations did provide support, and the
team did perceive their use to be beneficial. The interaction designer found it a
quick yet concise way to describe the evolving design, while the domain expert
found the descriptions easy to work with and providing a good grasp of the
design and the design issues.

6.3.6 Comparing use of WONDER to the task structures

Section 4.4 describes the way of working with WONDER. The three main de-
sign activities are described and further illustrated with task structures, shown
in Figures 4.6, 4.7, 4.8 and 4.9. In this section actual use of WONDER in the
SHIPSHAPE case is compared to these task structures.

Finding workspaces There is no task structure listed for finding workspaces,
because the activity is quite simple. In the SHIPSHAPE case the way of working
was followed. The initial set of workspaces was found based on the results of
the analysis phase, as reflected by the analysis documents listed in Table 6.5.
The main difference between the way of working and what happened in the

170

6.3. WONDER IN USE

case is the way in which those workspaces were described initially. As was
already noted in Section 6.3.1, visual diagrams were used as a first step. The
finding of additional workspaces, the second part of this activity noted in the
way of working, is described as part of the other WONDER activities.

Assessing workspaces The task structure for assessing workspaces is shown
in Figure 4.7. Basically, its goal is to perform a review of workspaces in terms
of the whole of the design. The very existence of the workspaces comes under
scrutiny. The reverse can also occur, a workspace can be created as a result of
assessment, for instance by turning a complex tool into a workspace of its own.

As discussed in Section 6.3.2 and illustrated in Table 6.6, assessment is re-
sponsible only for a few changes in the design representations of the SHIP-
SHAPE case. These changes are further categorized in terms of the tasks in the
task structure in Table 6.8.

Workspace Day Type Description
Delete activity 7 Break down Moved from Main to Small changes
Fix problems 9 Break down Moved several tools into their own

workspace
Status 10 Not relevant? Perhaps this should not be a separate

workspace, but rather be integrated
with other workspaces

Status 14 Not relevant All tools operate on a Scope, so move
them to a scope-related workspace

Small changes 21 Locate common
tools

Bring together several smaller work-
spaces into a single one

Main 23 Tool as
workspace

Make progress monitoring a separate
workspace

Table 6.8: Assessment changes to workspaces

The task structure contains all possible ways for a workspace to be assessed.
It is interesting to see that despite the small number of assessments in the de-
sign only one of the theoretical assessment outcomes in the task structure is
not encountered: a workspace that is too simple to be a separate workspace.
All other outcomes have occured during SHIPSHAPE’s design, as is shown in
Table 6.8.

What is perhaps surprising is the small number of assessments. Only six
changes in the design qualify as assessments. In Chapter 4 no predictions are

171

CHAPTER 6. USE OF WONDER IN A DESIGN PROCESS

made as to the frequency of the different steps in the design, but six assess-
ments does not seem a lot compared to the number of refinements.

One possible explanation is that in this case the analysis had already uncov-
ered much of the structure of the work, so that major changes were not needed
as much during the design phase. Another possible explanation is that making
major changes during the design is still a daunting task that is rather avoided,
despite being cheap at this phase of the development process and being made
easy with WONDER.

Refinement of workspaces—step 1 The first step of this activity is shown in
Figure 4.8. In addition to a task structure, the figure also shows the order in
which the elements will be added to the representation.

The ordering is basically correct. Two observations can be made. First, clus-
tering does occur in practice: two or more elements are added at the same time,
e.g. both materials and tools, or both goal and relations. Second, iterations can
occur, i.e. by going back to relations or goal after adding materials. While this
is a natural result of the second step of refinement, is is worth noting explicitly.
Table 6.9 shows the most common occurrences of changes made to workspace
descriptions, either to one part of a description or to several.

Combination %
tools & materials 20%
relations 14%
materials 14%
goal & relations 10%
tools 9%
goal 8%
housekeeping 7%
other combinations 18%

Table 6.9: Occurrence of different clusters of changes

Two clusterings are apparent: tools together with materials, and goals to-
gether with relations. Both of them are not unexpected, because they have
strong ties between them. Materials and tools are related because the tools
need to operate on the materials, so it makes sense to change one when chang-
ing the other. The goal and the relations to other workspaces are also strongly
related, because they both indicate something about the position of the work-
space in relation to other workspaces.

172

6.3. WONDER IN USE

One interesting thing to note is that three different types of workspaces
appear to have emerged. Table 6.10 shows how the SHIPSHAPE workspaces
listed in Table 6.1 can be mapped to these types. The three types are:

• workspaces that tie things together, often related to the high-level goals,

• workspaces that help to carry out the more detailed goals,

• workspaces that contain the common tools of the domain.

Tie together Detailed goals Common tools
Check plan Activity manipulation Maintain plan versions
Fix problems Delete activity Maintain scopes
Maintain plan Insert activity Maintain views
Small changes Insert project in plan

Plan validation
Planning engine
Precedence maintenance
Progress monitoring
Solution finding
Status information

Table 6.10: Types of workspaces

The task structure in Figure 4.8 shows explicit cooperation between the
domain expert, who suggests which elements to add, and the interaction de-
signer, who then interprets these additions in terms of the overall design and
who analyzes the additions in terms of HCI principles. This possibly results in
a feedback loop where the interaction designer gives criticism and suggestions
to the domain expert as additional input. Otherwise the suggested elements
are added. This process is repeated several times until the workspace is fully
described.

In the SHIPSHAPE case this was not what happened. In particular, the di-
vision of labor was not present; at least, not in the way described in the task
structure. What really happened was that the interaction designer proposed
the elements to be added, and added them as well. This reduced the role of
the domain expert to checking the added elements and giving feedback based
on this. Obviously the elements proposed by the interaction designer where
based on work done by the domain expert in one way or another, but the key

173

CHAPTER 6. USE OF WONDER IN A DESIGN PROCESS

difference with the task structure is that the involvement of the domain expert
has been much more indirect.

This can be explained by two things. First, the research instrument used to
create the descriptions was not usable enough, as is explained in Section 5.3.1.
Second, the constituency of the design team and the mapping of roles within it
had a tendency towards implicit discussion, as is explained in Section 6.3.5.

Furthermore, the lack of division of labor observed in the SHIPSHAPE case
has to do with ownership and leadership. The theory description in Chapter 4
does not give enough guidance in this respect. It is unclear who has ownership
of which representations. It is implicitly attributed to the group, but this is
by no means clear. Also, it is unclear which role has to take the lead, and
thus the responsibility and accountability for the different tasks. There is some
discussion on this topic in Section 4.5 when the team leader is discussed. There
the domain expert is identified as the most likely candidate for being team
leader, but this is not strongly stated, and it does not affect the individual tasks.

Refinement of workspaces—step 2 The second step in refining workspaces
is aimed at a continuous process of refinement, in which each workspace is put
under the microscope from time to time, and an attempt is made to resolve the
open issues with the workspace. This process is illustrated by the task structure
shown in Figure 4.9. Both step 1 and step 2 of the refinement process happen in
parallel, although both steps are not formally connected. As with the previous
task structure, this task structure does not reflect the case in several ways.

This task structure describes how to deal with questions and warnings
present in the representations. Obviously, these provide a good starting point
for cleaning up a workspace, but it should by no means be the only thing. Pro-
gressive insight into the whole of the design can also be a good starting point
for refinement, as can be a simple rereading. In effect, the single-handed focus
on questions and warnings does not do justice to the full set of possibilities for
refinement during actual design activities.

Furthermore, the task structure seems to indicate that this process needs
to go on until all uncertainty is removed from the design. While this may
be a desirable end solution, it may also be too much to ask. Certainly in the
SHIPSHAPE case some questions and warnings remained until the end, if only
because they were deferred to other design activities further on in the design
process.

Another difference between the task structure and the case is that the task
“scrutinize workspace relations” is actually much broader than just that. It

174

6.4. TESTING THE SHIPSHAPE DESIGN

also includes all the other explicit and implicit relations which can be asserted
through consistency checks such as those described in Section 5.2.4.

6.4 Testing the SHIPSHAPE design

This section contains a description of the way in which WONDER’s results have
been tested using a selection of real planners from Dutch shipyards. First the
testing approach is outlined, after which the results of the test are presented.
Finally a number of conclusions which can be drawn from these results are
described.

As part of the tests a prototype planning environment has been imple-
mented. This provides an opportunity for reflection on how WONDER’s rep-
resentations can be used as input for the remainder of the design process.

6.4.1 Test approach

Testing can be conducted by using WONDER in the design process of a large,
real-world, system. During the design process the design team can be observed
and interviewed, and the WONDER descriptions can be monitored over time.
When the design has been created, it can be presented to potential users of
the system, and their perception on how the system will support them in their
current work can be measured.

Within the confines of the research project it has not been possible to design
and build a complete planning system and implement this in several yards.
There are several reasons for this. First of all, creating a complete and opera-
tional system requires a large investment of money and time, neither of which
was available. Building such a system was estimated to cost approximately
$500,000.00 and take about 10 man years of work. In addition lead time for the
project was estimated to be at least a year, and likely more than that.

Furthermore, shipyard planning is critical to the operation of a yard. Briefly
switching over to another system is simply not possible because of the huge
investment and risk involved in such an endeavor. Also, running a shipyard
is currently a very competitive business, so not much time can be spared for
testing a new planning system.

Presentation In order to alleviate these constraints, a computer based pre-
sentation has been created [dGGP97]. The presentation consists of two parts.
The first part introduces the problems with current shipyard planning practice

175

CHAPTER 6. USE OF WONDER IN A DESIGN PROCESS

and outlines the new approach and issues and solutions associated with it. The
second part guides the planner through a number of situations often found in
shipyard planning. Table 6.11 on the next page shows the table of contents for
the presentation along with a brief description of each module including the
workspaces to be tested.

The first part of the presentation is not interactive. The planner is simply
taken through the presentation, which consists of a number of screens along
with an audio-based narrative. This setup was chosen because it ensures that
a consistent story is told to all planners. It also provides consistency with the
second part of the presentation. Finally, it allows planners to rerun the pre-
sentation at a later time. The pace of the presentation could be controlled by
pausing the presentation. This feature was used occasionally when planners
had specific questions or when they reflected on the information in terms of
their own yard. Figure 6.6 shows a screen from the presentation explaining the
activity view when planning part of a project.

Figure 6.6: Screenshot from presentation

The second part of the presentation follows the same format as the first
part, but at a number of places interactive prototypes of planning tools are

176

6.4. TESTING THE SHIPSHAPE DESIGN

Section Contents
Part One
Introduction Gives an introduction of the presentation system and the proto-

type.
The Yard Introduces a fictitious yard which is used throughout the presen-

tation. It also highlights some of the issues and problems with
this yard.

Problems Goes over a number of problems and their causes with current
planning activities at the yard.

Concepts Introduces the new planning concepts as mentioned in [Guy01].
Part Two
Scenario 1 Investigate the current capacity allocations. Determine bottle-

necks in the allocation of the ramp, and determine slack with
some disciplines. Test Capacity view.

Scenario 2 Create a temporary plan for a new project. This includes creating
an activity network within a new plan version using the GANNT
view. Also check resulting capacity allocations. Test Maintain
activities and Maintain plan versions.

Scenario 3 Create a validated high-level plan for a new project. Use auto-
mated tools for fitting the activity network. Check the capacity
allocations. Test Determine construction order and Planning en-
gine.

Scenario 4 Create a detailed plan while keeping an eye on the rough plan
boundaries. Deal with large amounts of data in the plan. Test
Maintain views.

Scenario 5 Check progress of work. Detect (potential) problems and try to
solve them. Test Progress monitoring.

Scenario 6 Create a visual floor plan for assembly of the ship, and investi-
gate the possibilities this approach offers. Test Maintain floorplan.

Scenario 7 Create a plan for work groups, and allocate already planned in
activities to groups.

Table 6.11: Contents of SHIPSHAPE presentation

177

CHAPTER 6. USE OF WONDER IN A DESIGN PROCESS

added. These prototypes are described in more detail below. This part of the
presentation is divided in a number of scenarios likely to occur on a shipyard.
Each scenario first introduces the circumstances, after which it is explained
how the new planning approach can support the situation. At suitable points
in the presentation the interactive prototype can be used to look at planning
data or to solve small planning problems. After working with the prototype
the presentation can be continued. With the completion of each scenario the
planners would fill out a questionnaire, which is discussed below.

Prototype A presentation alone is not sufficient to provide planners with a
good understanding of the proposed system, in particular for those parts of
the system which are very interactive. For this reason a prototype system has
been developed which allows the planners to interact with the activity and ca-
pacity views. The prototype is limited in that no functionality is implemented
outside of these views, and that no special care is given to issues such as relia-
bility, usability, or loading speed and storage facilities. The activity and capac-
ity views are fully operational, though. Most importantly, the elements in the
views, such as activities and dependency relations, can be edited and moved
in order to allow the planners to ‘play’ with the plan, and in this way get a real
understanding of problem solving with the proposed system.

The prototype features an extensive database. The database is both exten-
sive in the different kinds of data it incorporates, as well as in the amount of
data entered into it. Both are needed to make the planner’s interaction with
the prototype as close to the real world as possible. A wide variety of things all
influence the constraints and relations between different data elements. To en-
sure that the planners will experience such intricate relationships, data for all
of these elements needs to be present in the database. As an example, the us-
age of the ramp was tailored to provide a point in time in which a new project
could almost, but not quite, be fitted using the default building approach. As
a result, planners needed to make changes to the building approach to get the
project to fit; or to conclude that this could not be done.

In a similar vein the database needs to contain a large number of records
which together describe the current state of the shipyard plans. Even if only
a few ships are to be shown in the plan, a lot of data lies underneath each
ship. While the data does not need to match exactly, it does need to provide
a believable situation to the planners. To provide the planners with realistic
data, plans were collected at a shipyard. This data was used to populate the
fictitious yard with 5 ships. Most of these ships were only described at the

178

6.4. TESTING THE SHIPSHAPE DESIGN

project and rough detail plan levels, keeping the number of activities down
to about 75 activities per ship. 15 resources common to most yards were also
included in the data set.

The capacity view, shown in Figure 6.7, is shown to the planners first. It
gives an overview of the different skills available at the yard. For each skill
the available resources over time are listed, overlaid with the requested re-
sources. These requested resources are derived directly from the activities in
the plan. The capacity view only facilitates some interaction, mostly aimed at
rearranging the view itself for easier access to the information. For instance,
each skill graph can be collapsed to a thin line, reducing space while retaining
key information. The planner can also make changes to the available resources
for each skill, for instance by hiring some additional workers for a few weeks.
No changes can be made to the requested capacity, because this information is
derived from the activities, and therefore needs to be changed in the activity
view.

Figure 6.7: Capacity view (screenshot)

179

CHAPTER 6. USE OF WONDER IN A DESIGN PROCESS

The activity view, shown in Figure 6.8, provides access to the activities de-
fined in the plan. The primary purpose of the activity view is to allow access
to the activities, and to show them in relation to each other, and to the time
line. Interaction in this view is primarily aimed at positioning each activity
correctly in time. This involves moving the activities, but also modifying their
lead times. A number of indicators are used to show various constraints.

It is also possible to view the activity and capacity view in a synchronized
fashion. The result of this synchronization is that scrolling one view in time
will also scroll the other, keeping them synchronized in time. Also, changes to
the activities are immediately reflected in the capacity view.

Figure 6.8: Activity view (screenshot)

The questionnaire In order to solicit feedback from the planners a question-
naire has been used. A separate questionnaire has been used after each sce-
nario to ensure that the details of that particular scenario, and the aspects of
the design on which it is focused, were still fresh in memory. Each question-
naire is structured in a similar way.

First, a general explanation of the questions in the questionnaire is pre-
sented. This explanation is identical for all the questionnaires, and is included
for easy reference. Then, the purpose of the scenario is stated, much as is done
in Table 6.11. This will help to focus the answers on the important and relevant
issues of each scenario. In most questionnaires this is followed by a number of
questions about the planning problems and proposed solutions. The purpose

180

6.4. TESTING THE SHIPSHAPE DESIGN

of these questions is to test the shipyard planning theory briefly presented in
Section 6.1.1. These questions are not directly related to the testing of WONDER.

Next, one or more workspaces are evaluated. The evaluation of each work-
space follows a standard pattern. The evaluation starts with a list of compo-
nents of the workspace. The user is asked to rate how important each of these
components is for reaching the goal associated with the workspace. Each com-
ponent is ranked on a 4-point scale, with the added option of not having a
specific opinion about it, for instance because it concerns an area of work with
which that particular user is not familiar. The list of components is directly
related to the materials and tools defined for the workspace. After the list of
components, the user is asked to describe any additional components which
were not mentioned. Finally, the user is asked to compare relevant tools cur-
rently being used at their yard with the workspace.

The questionnaire is paper-based. This gives the planners a welcome break
from the computer screen. It also makes it easier to write comments or sketch
other solutions or current practice. Finally, it also makes the results more reli-
able than having the questionnaire on the same computer as the presentation.
In the latter case the results are in danger of being too positive and not expres-
sive enough [RN96].

Testing environment In order to facilitate the planners of the shipyards as
much as possible, each yard was visited to carry out the testing. By bringing
the test environment to the yards we were able to convince more planners to
cooperate in the test. The testing equipment consisted of PCs with 17" screens,
and audio capabilities. The machines would be set up in a conference room at
the yard, so that interruptions could be minimized. The complete presentation
would be cut into three sessions because of its total length.

The first part of the session, including the presentation of the yard, current
problems in planning, and proposed solutions, was often done as a plenary
session. We found that this facilitated discussion of the problems and their un-
derlying reasons, and also helped to reflect the presentation back to the plan-
ner’s own yard. A plenary session was used for this part of the presentation
because it facilitates interaction within the whole group, and because this setup
allows more different opinions to be brought forward.

The remainder of the presentation, consisting of all scenarios, was con-
ducted in pairs as much as possible. This allows the planners to talk to each
other about the scenarios and the problems encountered in them. It also makes
it easier to work through the new concepts and software prototype, because

181

CHAPTER 6. USE OF WONDER IN A DESIGN PROCESS

two people often see more than one, and because assumptions need to be made
explicit for them to be communicated to the other planner. Finally, working in
pairs changes the traditional think-out-loud technique into co-discovery learn-
ing, which means that more information becomes available in a much easier
way [BB99].

The questionnaires were filled out individually, allowing for more, possibly
contrasting, viewpoints. Also, different planners have different job descrip-
tions and different experience, making it useful to get each individual opinion.

At all times throughout the session at least one person was available for
questions about the software prototype and the presentation.

6.4.2 Test results

A total of 12 subjects have cooperated in the presentation and demonstration.
Not all of the subjects were able to fill out all parts of the questionnaire. The
presentation and demonstration was spread over several days, because of the
time needed to complete it, and not all subjects could be present at all times.

All subjects are involved with shipyard planning in their work in one way
or another, depending on their exact job description. The subjects were mostly
project planners or working in production support, which includes planning
for the yard. The subjects were selected from most of the major shipyards in
The Netherlands. These yards make a large variety of ships, with some yards
averaging ships of 10,000 tons, while some of the smaller yards average around
6,000 tons. Most yards were working on 2 to 4 projects at any one time, com-
pleting an average of 2 1

2 projects per year.

Background: current support tools The kind of support in use by the yards
varies greatly. Some yards use a project planning tool such as PRIMAVERA
[Pri99] or TIMELINE [Tim99] to support planning. These tools are usually used
to support both activity and project planning. Capacity planning is sometimes
also supported with these tools, but it is more common to see this being sup-
ported by spreadsheets. Smaller yards use spreadsheets for all planning, and
sometimes even use manual methods such as a planbord exclusively.

Registration of and control over hours worked is usually done in a separate
system. Two of the larger yards use custom software to support this process.
Other yards use spreadsheets, or process the hours manually.

Table 6.12 on the next page shows the satisfaction of the subjects with their
current planning support tools. Yards using PRIMAVERA, and to a lesser extent

182

6.4. TESTING THE SHIPSHAPE DESIGN

TIMELINE, are quite content with the way it supports their planning process.
Custom software used for hour logging and reporting can perform well, but as
the rating for TVR 4 shows it does not need to be that way. The large standard
deviation for TVR is caused by the fact that TVR performs several functions,
some of them good, and others quite bad. Spreadsheets seem to work, but
clearly lack the domain-specific features. Finally, manual methods of dealing
with planning are not appreciated. The total number of observations is larger
than the number of planners because the planners were asked to rate their tools
on several points, and some planners use several tools together.

Support tool N X sX
PRIMAVERA 9 5.0 0.0
TIMELINE 5 3.8 1.1
Proprietary system for hour logging 4 3.7 0.96
Spreadsheet 7 3.1 0.9
TVR 3 2.3 2.31
Manual 1 1.0 0.0

Table 6.12: Support tools and their ratings on a scale of 1–5, with 5 being best

Workspace test results Two questions were asked during the test to deter-
mine an evaluation of each workspace as a whole, each of which could be an-
swered on a scale of 1–5, 1 being worst, 5 being best:

1. Does the workspace allow you to reach the stated goal?

2. Does this workspace appear to be better at it than your current set of
tools?

The answers to these questions can be found in Table 6.13 on the follow-
ing page and Table 6.14 on page 185. Each table shows the sample size N , the
average response X , and the standard deviation of the sample set sX . These
numbers provide an indication for the average answer of the planners to each
question, and whether there was much difference in their answers. This indica-
tion does not provide any statistical confidence, though. From these numbers
alone is is not clear whether a given workspace yields a positive answer. The

4TVR is a proprietary tool custom built for one of the yards.

183

CHAPTER 6. USE OF WONDER IN A DESIGN PROCESS

fact that not all questions have been answered by the same amount of peo-
ple further complicates any comparisons. Therefor another column has been
added to each table. This column contains a 95% confidence interval around
µ, the mean of the whole population. This gives the confidence that in 95% of
the cases the actual mean for all the shipyard planners lies within the interval
[FT89].

Table 6.13 contains the results for the first question: “Does the workspace
allow you to reach the stated goal?”. The workspaces are ordered according
to the lower boundary of the interval. The table shows that two workspaces
are clearly rated good, with even the worse case scoring over 4. Furthermore,
two workspaces have worst case scores slightly lower than 4. The remaining
four workspaces all score between 3 and 4, even when looking at the low end
of the confidence interval. From this we can conclude that all the workspaces
do allow the planners to reach the goal stated for it, although with varying
degrees of success.

Workspace N X sX 95% confidence interval
Determine construction order 11 4.5 0.5 4.1 ≤ µ ≤ 4.81

Maintain views 5 4.0 0.0 4 ≤ µ ≤ 4
Planning engine 8 4.4 0.5 3.94 ≤ µ ≤ 4.81

Capacity view 12 4.3 0.7 3.92 ≤ µ ≤ 4.75
Maintain plan versions 10 4.2 0.6 3.75 ≤ µ ≤ 4.65

Maintain activities 10 4.1 1.1 3.31 ≤ µ ≤ 4.89
Progress monitoring 8 4.1 1.0 3.3 ≤ µ ≤ 4.95

Maintain floorplan 9 3.9 0.9 3.18 ≤ µ ≤ 4.6

Table 6.13: Results for “Does the workspace allow you to reach the stated
goal?”

Table 6.14 shows the results for the second question. Again the workspaces
are ordered according to the lower boundary of the 95% confidence interval.
Looking at the worst case boundaries it is clear that all but two of the work-
spaces are at least as good as the tools currently in use. Table 6.12 already
showed that there is a great difference in which tools planners use, and this is
clear from the variance in the results. If the higher boundary of the interval
is considered, all but one tool are rated at least better than the current tools.
It is not possible to make a more detailed analysis of these results based on
what tools planners use because the sample size becomes very small, and be-
cause several planners use several tools together which makes it hard to define

184

6.4. TESTING THE SHIPSHAPE DESIGN

specific groups.

Workspace N X sX 95% interval
Determine construction order 10 4.3 0.8 3.71 ≤ µ ≤ 4.89

Planning engine 8 4.3 0.7 3.66 ≤ µ ≤ 4.84
Maintain plan versions 10 4.2 0.8 3.64 ≤ µ ≤ 4.76

Maintain activities 10 4.0 0.8 3.42 ≤ µ ≤ 4.58
Maintain floorplan 9 3.8 1.0 3.03 ≤ µ ≤ 4.52

Progress monitoring 7 3.9 0.9 3.02 ≤ µ ≤ 4.69
Capacity view 11 3.3 0.9 2.67 ≤ µ ≤ 3.88

Maintain views 5 3.2 0.8 2.16 ≤ µ ≤ 4.24

Table 6.14: Results for “How do the workspaces compare to the current tools?”

The workspaces that are rated best compared to the current tools are in-
deed workspaces that are not available in current planning tools. The first two
workspaces are not available at all, while maintaining versions can be done
with some of tools, but only in a cumbersome way, and without the ability to
easily compare or move parts of a version to the main plan.

The two workspaces that are rated worst are the ones that are most promi-
nently available in current tools. The versions included in SHIPSHAPE did not
differ significantly from those tools in terms of functionality, and the SHIP-
SHAPE implementation was not as feature-rich or complete as some of the tools
currently used.

Variance analysis Based on the clear influence of the current planning tools
on the answers of the second question, an analysis of variance has been carried
out. Table 6.15 on the following page shows the results, taking the currently
used tool as an independent variable, and the answers to the question how
the workspaces compare to the current tools as dependant variables. The table
shows the results of a univariate analysis of variance using a General Linear
Model [SPS97, Sta99]. For this purpose the planners have been divided into
two groups based on the maturity of the tools: those that are currently using
PRIMAVERA or TIMELINE, and those using something else.

The workspaces are ordered according to the significance of the finding in
Table 6.15. This significance indicates the chance that there is no statistically
significant relationship between the group a planner is in and the ratings given
to workspaces. The analysis of variance makes it clear that there is a strong re-
lationship between the tool currently being used and the way the Capacity view

185

CHAPTER 6. USE OF WONDER IN A DESIGN PROCESS

Workspace SS df F Sig. R2

Capacity view 4.848 1 13.091 0.006 0.593
Maintain activities 1.667 1 3.077 0.117 0.278

Determine construction order 1.350 1 2.274 0.170 0.221
Progress monitoring 1.190 1 1.623 0.259 0.245

Maintain plan versions 0.600 1 0.960 0.356 0.107
Maintain views 0.300 1 0.360 0.591 0.107

Planning engine 0.003 1 0.058 0.818 0.010
Maintain floorplan 0.005 1 0.052 0.826 0.007

Table 6.15: How the currently used tool influences the comparison question

is scored. Further analysis shows that planners using PRIMAVERA or TIME-
LINE score a 2.67 on average (s = 0.52), while the other planners score a 4.00
(s = 0.71). Similar relationships for the other workspaces are not significant,
but for Maintain activities it is also true that the planners using PRIMAVERA or
TIMELINE give a lower score than the others.

This effect can be expected. Obviously the difference in comparison should
be smaller if a more similar tool is already being used. For those workspaces
that are not available in current planning tools, such as Planning engine or Main-
tain floorplan, there is no difference in the way the workspaces are compared,
because there really is nothing to compare it with. As Table 6.14 shows, these
workspaces get the higher scores indicating that there is no statistically sig-
nificant relation between the group the planner belongs to and the workspace
ratings given.

Qualitative questions For each workspace two qualitative questions were
asked. The first question asked whether anything was missing from the work-
space. The second asked to describe the workspace in a few brief words, giving
an overall impression.

Table 6.16 on the next page contains an overview of those items listed as
missing for the workspaces used in the test. Specific suggestions for the pro-
totype and more general comments have been omitted for clarity. This leaves
suggestions for tools and materials. The workspace Maintain views is not in-
cluded. It was not actually shown in the prototype, but only suggested, and no
useful feedback was received with the open questions.

A variety of items are listed by the planners under the heading of missing
items. While all of them indicate useful extensions to a planning system or use-

186

6.4. TESTING THE SHIPSHAPE DESIGN

Workspace Missing items
Capacity view Historical data; compact support for high-

level decisions; automatically indicate earli-
est possible start date for new projects

Maintain activities Move work from one department of the yard
to another; make cause of impossible actions
more clear; group similar activities together

Maintain plan versions Simple way to try changes and revert them;
use standard plans; version control for qual-
ity control

Determine construction order Include standard building strategies; leveling
of resources

Planning engine More insight into planning process; room for
own comments

Progress monitoring Make sure to keep changes to a minimum;
making changes in plans needs consensus of
whole yard, is not only a technical problem;
undo; automatic planning

Maintain floorplan Handle fixed floorplan items such as cranes;
there are many more factors that determine
layout

Table 6.16: Missing items per workspace

187

CHAPTER 6. USE OF WONDER IN A DESIGN PROCESS

ful suggestions for improving the prototype, the real question here is whether
they constitute missing tools or materials that should not have been missing in
the workspace descriptions.

Obviously this is not an easy question, because there is no one true de-
scription for a workspace. Some of the planners’ suggestions were considered
during the design process, but thrown out for various reasons. An example
of this is handling fixed floorplans in Maintain floorplan, which was not im-
plemented in the prototype due to time-constraints. Also, some suggestions
are implemented, either in the workspace being commented on, or in another
workspace. One example of this is the historical data suggested for Capacity
view. Historical data is available through the Progress monitoring workspace,
though. Another example is to have automatic planning in Progress monitoring.
Automatic planning is part of Planning engine, which does have a relation with
Progress monitoring.

For the most part it appears that these suggestions are often rooted in see-
ing only one part of the system at a time in an artificial setting. A small number
of suggestions do indicate missed tools in workspaces, though. For instance,
including standard building strategies in Determine construction order, or indica-
tion of the cause of impossibly placed activities more clear in Maintain activities.

Table 6.17 contains a list of the quick comments planners were asked to give
in response to each workspace, giving their overall impression of the work-
space. From the comments it is clear that in general the planners are happy
with the workspaces as they are presented. Comments such as ‘clear’ can in-
dicate that no unneeded clutter is present in the workspaces. Also, some of
the workspaces are either at the same level or better than PRIMAVERA, which
according to Table 6.12 is the best currently used support tool.

Workspace Quick comments
Capacity view simple; clear; similar to PRIMAVERA; direct feedback

works well
Maintain activities user friendly, clear, fast to use

Maintain plan versions handy, good, good support for high-level decisions;
would be good addition to PRIMAVERA

Determine construction order useful; clear; more testing needed with own data
Planning engine simple; clear

Progress monitoring good, but someone needs to enter a lot of data; a lot of
work; complete; whole organization needs to adjust to
this

Maintain floorplan might not be usable in practice

Table 6.17: Quick comments per workspace

188

6.5. TESTING THE ASSUMPTIONS

Additional comments from planners The questionnaire also contained sev-
eral open questions and some planners added comments of their own. This
section contains a summary. In general the planners were pleased with our
work:

“The GANNT and activity view are very promising.”

They also indicated that we were not done yet. For instance, we should
have tied all the information even closer together:

“The links between all the different elements are very important, and they
need to be used further. For instance, when an activity is selected, it should
be very easy to see the related resources.”

Also, we had not captured the links with the practice in the yard completely,
e.g.:

“The connection with the yard should be better, for instance resources
should be sorted in chronological order related to the way a ship is built.
Another example is when capacity problems are solved to sort similar ac-
tivities together.”

and:

“The capacity view should contain the tool to outsource work, that is
where it is needed. Also, some upper limit on outsourcing is needed.”

Finally, while having more information available is good in general, it also
depends on the goals of the planner:

“Sometimes there is too much information. For instance, in the capacity
view it might be better to use just one tint of color per project so that the
relations between the projects become clear.”

6.5 Testing the assumptions

In this section a more structured reflection on the SHIPSHAPE case is presented.
To this end the assumptions presented in Table 4.7 on page 129 are discussed.
Further reflection on WONDER and on the research questions will be presented
in Chapter 7. A summary of this discussion is presented in Table 6.18 on
page 198.

189

CHAPTER 6. USE OF WONDER IN A DESIGN PROCESS

About half of the assumptions are either obviously true or false. The other
assumptions are harder to qualify. It can be argued that if an assumption is
not completely true, then it should be marked as false. This would assume a
black-and-white world, though. It makes more sense to look at the discussion
of each assumption, and check why it is that the assumption is not obviously
true or false. In most cases it turns out that in general, the assumption is true,
but that there are a few cases or exceptions or special situations which put the
assumption in perspective, although not invalidating it. An example of this
is assumption 6 which states that text is a good medium for the model. While
this is true, evaluation of WONDER showed that graphics would still be needed,
so text can not be used exclusively. In such cases the assumption is marked
‘mostly true’. This leads to the following classification:
• true
• mostly true
• undecided
• mostly false
• false

6.5.1 Assumptions about the way of thinking

Assumption 1 The model described with workspaces conforms to the mental model
of the users towards their work.

This assumption is tested by asking the users about the workspaces in the
questionnaire. Overall the workspaces confirm the way the planners think
about their work, making this assumption true. Three questions support this
conclusion.

One question asks whether the workspace is sufficient for reaching the as-
sociated goal. The results for this question are shown in Table 6.13 on page 184.
Each of the workspaces scores well.

The second asks whether anything has been forgotten in the workspace.
The responses are summarized in Table 6.16 on page 187. Only a few of the
items listed there are clearly missing from some of the workspaces. The major-
ity of items in the table are additional enhancements or things which are very
hard to implement technically. These suggestions do show that the workspaces
are in line with the mental models of the planners.

The third question asks for a brief impression of the workspace in a few
words. Table 6.17 on page 188 shows these comments. The response of the
planners towards the workspaces is quite positive.

190

6.5. TESTING THE ASSUMPTIONS

Assumption 2 Each workspace allows the users to accomplish the goals associated
with the workspace.

This assumption is strongly related to assumption 1. Planners have been
asked whether they feel they can reach their goals with each of the workspaces.
Table 6.13 on page 184 contains the answers to this question. Clearly each of
the workspaces allows the planners to reach the stated goals.

In addition, Table 6.16 on page 187 provides an indication whether all the
right tools are contained in the workspaces. This is not completely the case,
with some items missing from workspaces that should have been there. Most
of the suggestions are for items that are secondary to the goal associated with
the workspaces, though, so not having them available does not inhibit the work
of the planner. Because improvements are possible in selecting an even better
set of tools and materials, this assumption is mostly true.

Assumption 3 The description of ill-structured work matches the perception of that
work by both the domain expert and participating users.

This assumption tests whether the representations of WONDER give an ac-
curate description of the work that is being described, in particular for the ill-
structured parts of the work. The domain expert partially can be a judge of this,
because of the need to describe his view in the work using these descriptions.
The fact that these descriptions exist provides proof that the assumption is true
for the domain expert. Furthermore, as described in Section 6.3.5, the domain
expert acknowledges that the descriptions provide a good way to describe the
work.

The participating users sometimes had trouble to get a good grasp of how
the workspace would translate into support for their workplace. This seems
to be caused mostly by a desire of these users to visualize the workspaces,
which is specifically avoided while making the WONDER descriptions. Thus
this assumption is mostly true.

Assumption 4 Explicitly allowing ambiguity and inconsistency in the design pro-
cess is beneficial.

The review in Section 6.3.4 indicates that allowing ambiguity and inconsis-
tency in the design process is beneficial. The case is clear for inconsistencies.
Ambiguity will always be a part of the design process, but allowing it in the
representations makes this explicit. One drawback is mentioned on page 174:
it can be hard to eliminate all of the ambiguity and inconsistency because this
is not mandatory. Therefore this assumption is mostly true.

191

CHAPTER 6. USE OF WONDER IN A DESIGN PROCESS

Assumption 5 The WONDER representations consist of the right ingredients: work-
space, material, action, tool.

Section 6.2.5 contains a description of the actual use of the three main WON-
DER representations. In summary, the action representation is hardly used,
there are some minor changes to the workspace representation, and the mate-
rial representation is used as intended. This assumption is undecided.

6.5.2 Assumptions about the way of modeling

Assumption 6 Text is a good medium for a model during the early design phase.
Text did prove to be a good medium for the representations during this

phase of the design process. No significant problems with text were observed
during the SHIPSHAPE case. In the evaluation in Section 6.3.5 the design team
indicates using WONDER was beneficial. Two observations need to be added to
this conclusion, though.

First, there is one point in the design process, described in Section 6.3.1,
where text was not a good medium. Instead, diagrams were used.

Second, text may be a good medium, but it can not be the only one. While
the description in Section 4.3.2 is not entirely clear about it, it does seem to im-
ply that text is the only medium to be used in WONDER’s representations. This
is in fact what happened initially when using WONDER in the SHIPSHAPE case.
However, some of the concepts of shipyard planning are complex, and some
visual representation does help quite a bit in gaining understanding. WONDER
supports only textual representations, though, as is argued in Section 4.3.2.
This caused the visuals that were relevant to live outside of the WONDER rep-
resentations. At the end of the case study some of them were added to the
representation as possible design alternatives as shown in Figure 6.9 on the
facing page, but this was too little too late for the case study. This assumption
is mostly true.

Assumption 7 The evolution from free to structured information as indicated in
Table 4.4 works well.

This assumption is true. The evolution indicated in Table 4.4 on page 113
works well, as is partly asserted by assumption 4. Also, Table 6.9 on page 172
shows how these changes are made. It should not be a surprise that changes
to the tools and materials top the list. These categories require most of the
changes as their descriptions progress from unstructured to structured infor-
mation.

192

6.5. TESTING THE ASSUMPTIONS

Figure 6.9: Visual addition to WONDER representation (detail)

Assumption 8 No crucial information related to the early design process is kept
outside of WONDER.

This assumption is false. Some important information was kept outside of
WONDER descriptions. This has happened for the most part at the start of the
design process and towards the end of the process supported by WONDER.

In the beginning, before using WONDER but after the analysis process, sev-
eral diagrams were used to communicate the sometimes complex relations be-
tween tasks, departments at the yard, and workspaces. Examples of these dia-
grams are shown in Figures 6.4 and 6.5.

The workspace diagrams do have a strong link with the workspace repre-
sentations, and in particular with the relations section in it. A diagram, how-
ever, works much quicker and easier at this early stage in the design process,
also because not much information is attached to each workspace yet.

Towards the end of the design process supported by WONDER, the need for
additional information also becomes bigger. Figure 6.9 on page 193 shows how
an illustration is included in a WONDER representation, even though this is not
normally done. This is also discussed as part of assumption 6.

Finally, knowledge about planning and scheduling in general, and within
shipyard planning in particular, was needed to correctly interpret the descrip-
tions. This information can not be described as part of the representations,
so additional documents, along with site visits and discussion was needed to
provide a sufficient context in which the representations could be fully under-
stood.

193

CHAPTER 6. USE OF WONDER IN A DESIGN PROCESS

6.5.3 Assumptions about the way of working

Assumption 9 The design activities described in Section 4.4 are a correct represen-
tation of the actual use of WONDER.

This hypothesis tests whether the task structures in Section 4.4, more specif-
ically in Figure 4.6 to Figure 4.9, present an accurate description of the use of
WONDER during design. Section 6.3.6 compares actual use with the task struc-
tures presented in Section 4.4.

It is clear that the task structures do not provide a complete match. A num-
ber of smaller and larger differences are described in Section 6.3.6. For instance,
often clustering does occur, where several elements of a workspace description
are added at the same time. Also, the order in which activities are carried out
does not always match the task structures. This is not surprising, and is in fact
to be expected [PC86].

All of these differences do not contain a fundamental deviation from WON-
DER’s way of working. Some can be attributed to the task structures being
an ideal representation, where for instance an iteration goes on until all un-
certainty is solved. In practice this is not always done because it may be too
time-consuming or because it is not appropriate at the time.

There is one other issue that is related to the description of the design ac-
tivities. It has to do with responsibilities and ownership. By not making this
explicit in the way of controlling in Section 4.5, this can easily cause problems
during the design process, for instance because it is not clear who should up-
date what parts of the descriptions.

Finally, it turns out that no sweeping changes have been made to the design
once the first round of activities had been done. Most likely this is because
these sweeping changes had already been carried out during construction and
evolution of the diagrams shown in Figure 6.4.

In summary the design activities presented in Section 4.4 do provide a good
approximation of the actual use of WONDER, but not a perfect representation,
making the assumption mostly true. Given that using some parts of WONDER
is a ill-structured task, the latter does not come as a surprise.

Assumption 10 The different design team members can all work with WONDER.
This hypothesis tests whether the WONDER descriptions can be used by all

design team members. This usage can be separated into two aspects. First of
all a distinction needs to be made between working with WONDER descriptions
in general, and working with the current support tool. Second, a distinction

194

6.5. TESTING THE ASSUMPTIONS

can be made between just reading or browsing the descriptions, and actively
changing them.

The current example system for computing support is described in detail
in Chapter 5. Its usability is evaluated in Section 5.3.1, where it becomes clear
that ease of maintenance for all design team members is a problem, due to the
implementation of the example system. This is a property of the implementa-
tion, however, and not of the WONDER descriptions. The design team members
did all actively work with the descriptions, and made changes either on paper,
or in joint editing/reading sessions. The changes proposed in Section 5.3.2 will
alleviate most of the problems, and make it easily feasible for all design team
members to edit the descriptions. Based on feedback from the design team this
should not be a problem. This makes the assumption mostly true.

6.5.4 Assumptions about the way of controlling

Assumption 11 The roles defined in Table 4.5 on page 121 match actual use of
WONDER.

The evaluation of the design team during the SHIPSHAPE case is described
in Section 6.3.5, and the assignment of roles is summarized in Table 6.7 on
page 169. Drawing more general conclusions is hard in this case because the
design team is small, resulting in a lot of sharing of roles between team mem-
bers.

Two observations were not apparent before. First, having several team
members with the same background, in this case software engineering, does
pose problems in that the design process is likely limited by this. Second, shar-
ing roles can cause a lot of problems because parts of the communication be-
tween different roles is no longer explicit.

In summary there is not enough information in the case to draw a conclu-
sion either way; the assumption is undecided.

Assumption 12 The domain expert shall be the team leader.
This assumption is true. As discussed in Section 6.3.5 this was not strictly

adhered to in the SHIPSHAPE case, but even so the observations made during
the case indicate that the domain expert is in the best position to be the team
leader.

195

CHAPTER 6. USE OF WONDER IN A DESIGN PROCESS

6.5.5 Testing the way of supporting

Assumption 13 Computer assistance is needed to work efficiently and effectively
with WONDER.

This assumption is true. Computer assistance is a crucial part of working
with WONDER. It makes working with WONDER more efficient. Assumption 14
indicates that working with WONDER is worth the time at this moment. If ad-
ditional time would have to be taken to do things manually which are now
supported by computer, this would not be the case. The computer assistance
takes care of many of the small details, and having a single repository for the
design representations which can also be shared over the network is quite help-
ful. Even so, Section 5.3.1 indicates that additional improvements can be made,
making the use of WONDER even more efficient.

Computer assistance also makes working with WONDER more effective. For
example, tracking inconsistencies becomes much easier with computer assis-
tance, which is important as is argued in Assumption 4. Navigation also be-
comes easier. Finding the right information quickly is also easier, for instance
through a search engine. Finally, browsing the information helps to develop a
better mental image of the whole of the design, leading to better design deci-
sions.

6.5.6 Other assumptions

Assumption 14 The time taken to use WONDER is worth the results it yields.
This assumption questions the value of WONDER in terms of the invest-

ments it requires. An evaluation of this assumption is very hard, because both
the cost and the benefits are difficult to quantify, and because the use of WON-
DER would have to be compared to methods which would yield the same gen-
eral results. Notwithstanding these issues, it is at least possible to say some-
thing about the costs and benefits of using WONDER.

One indicator of the cost how the design team judged the effort of using
WONDER in the SHIPSHAPE case. The comments portrayed in Section 6.3.5
seem to indicate that this is the case: WONDER is perceived to be beneficial, or
at least not hindering work progress.

As for the benefits, the use of WONDER should have a tangible effect, either
by helping to structure the design process, or by serving as input to the remain-
der of the design process. Certainly use of WONDER is a big improvement over
the situation described in Chapter 2, in the sense that WONDER provides much
more structure at the level that is suitable in the early design process. Also, the

196

6.5. TESTING THE ASSUMPTIONS

design representations were directly useful in developing a prototype environ-
ment, as described in Section 6.4.1.

In summary, while it is impossible to test this assumption in objective terms
within the context of this thesis, the design team did have the perception that
using WONDER was worth the effort. This assumption is true.

Assumption 15 Compared to tools currently in use a WONDER workspace descrip-
tion provides at least the same level of support.

This assumption is tested with a question in the questionnaire. This ques-
tion asks whether the proposed workspace seems to provide a better work en-
vironment than currently is use. The scores for this question are shown in
Table 6.13 on page 184. Although in general the proposed workspaces seem
to perform a bit better than the current work environment, some caution is in
order with these results.

The results of this question depend strongly on the tool already in use at
a yard. Table 6.12 on page 183 shows that some tools already provide a high
level of satisfaction, and when the SHIPSHAPE workspaces are compared to
these tools the score often goes towards favoring the current tools. This might
happen because, while the workspace offers something comparable to the cur-
rent tools, the current tools are simply more familiar.

Overall, it can be concluded that the proposed workspaces provide at least
the same level of support as the current tools, thus this assumption is true.

6.5.7 Additional observations

Several observations on using WONDER in the SHIPSHAPE case can be made
apart from the assumptions. They are presented below. Further reflection on
WONDER is presented in Chapter 7.

Actions Clearly the actions are not a very useful part of WONDER, as is as-
serted in Assumption 5. In fact, if the actions would be taken out of the evalu-
ation of this assumption it would be ranked as mostly true. Actions are simply
design details which are too low-level at this stage of the design.

Multiple types of workspaces One surprise is that several distinct types of
workspaces surfaced, as discussed on page 6.10. The placement of the different
types of workspaces in the workspace hierarchy depicted in Figure 6.2 makes it

197

CHAPTER 6. USE OF WONDER IN A DESIGN PROCESS

Assumption Result
1 The model described with workspaces conforms to the

mental model of the users toward their work.
True

2 Each workspace allows the users to accomplish the
goals associated with the workspace.

Mostly true

3 The description of ill-structured work matches the per-
ception of that work by both the domain expert and
participating users.

Mostly true

4 Explicitly allowing ambiguity and consistency in the
design process is beneficial.

Mostly true

5 The WONDER representations consist of the right ingre-
dients: workspace, material, action, tool.

Undecided

6 Text is a good medium for a model during the early
design phase.

Mostly true

7 The evolution from free to structured information as
indicated in Table 4.4 works well.

True

8 No crucial information related to the early design pro-
cess is kept outside of WONDER.

False

9 The design activities described in Section 4.4 are a cor-
rect representation of the actual use of WONDER.

Mostly true

10 The different design team members can all work with
WONDER.

Mostly true

11 The roles defined in Table 4.5 match actual use of WON-
DER.

Undecided

12 The domain expert shall be the team leader. True
13 Computer assistance is needed to work efficiently and

effectively with WONDER.
True

14 The time taken to use WONDER is worth the results it
yields.

True

15 Compared to tools currently in use a WONDER work-
space description provides at least the same level of
support.

True

Table 6.18: Assumptions about WONDER and their results

198

6.5. TESTING THE ASSUMPTIONS

clear why these three types of workspaces emerged. They are the unconnected
workspaces, and the nodes and leaves of the hierarchy.

One person in charge of the design representation During the evaluation
of Assumption 10 it is noted that not all design team members did edit the
WONDER descriptions directly. This may actually be a good thing. When the
representations are edited by one person there is a better chance that terminol-
ogy will be used consistently [Joh00].

Overall quality of the design An effort directed specifically at producing an
actual planning tool for shipyards may result in a better overall design. The
specific focus of this research on the use of WONDER for conceptual design has
caused some design activities to not get the attention they should have gotten.
For example, better contextual design with the actual planners would have
shown earlier in the design process that the views did not get the right place in
the design.

199

CHAPTER 6. USE OF WONDER IN A DESIGN PROCESS

200

CHAPTER 7

Conclusions

The questions that are posed in Chapter 1 will be answered in this chapter. In
between much has happened. An exploratory case study and a literature study
have resulted in a theory on the design of interactive systems called WONDER.
WONDER has been used on the large real-world problem of shipyard plan-
ning in the SHIPSHAPE project, which allows answering the research questions
asked in Section 1.3. The assumptions drafted in Section 4.8.2 and discussed in
Section 6.5 provide the linking pin for this. This chapter also contains a broader
reflection on the research presented in this thesis. It is concluded with a look
toward the future.

7.1 The thesis in a nutshell

In this section the major line of argument is brought together. First, WONDER
is summarized in the light of the research leading up to it. The center of the ar-
gument are the assumptions associated with WONDER, and tested in the SHIP-
SHAPE case. These are summarized, and then reflected back to the research
questions.

201

CHAPTER 7. CONCLUSIONS

7.1.1 WONDER and its roots

Chapters 2 and 3 provide the roots for WONDER as it is presented in Chapter 4.
Together they provide a combination of theory and practice aimed at exploring
the support for the design of interactive systems for ill-structured work.

Working on a practical real-world design problem like DIANA resulted in a
number of important conclusions. First, support for conceptual design is cer-
tainly not mainstream, not even for structured work. This is a big bottleneck,
and guidance for doing this part of the design is lacking. Second, both task
analysis and grounding the design in the work of the users did help, but nei-
ther of them proved to be an ideal solution. Task analysis proved to be quite
useful for the structured parts of work, thus giving a good framework for the
ill-structured parts. Grounding the design in the actual work of users proved
to be very helpful in understanding the real problems to be solved, but did not
in itself help to set a direction for the design. Third, the use of graphical in-
terface elements, while sometimes helpful to get across certain design aspects,
has a tendency to focus on the details instead of the big picture.

Additional study of the available theory did not lead to a single solution
for this problem, but it did point out a number of recurring themes. The im-
portance of the user context, the need to deal with ill-structured work, the use-
fulness of design tools, and the balance between rigidness and flexibility are
all important themes during the early design process. Based on these issues
and on other literature picked up during the study, a set of requirements and
suggestions has been formulated.

These requirements and suggestions are picked up in Chapter 4. In this
chapter a theory called WONDER is presented which fulfills most of the require-
ments and suggestions, at least in theory. This workspace-oriented design rep-
resentation introduces a way of thinking about interactive systems: that they
are built up from individual places, in each of which a particular goal can be
reached. By dividing the interactive system into these workspaces, the over-
all structure of the system can be mapped out. By describing each workspace
carefully in terms of the materials and tools needed to reach the goal given the
particular context, a precise representation can be given without resorting to
specifying the, possibly ill-structured, tasks.

7.1.2 Assumptions

The presentation of WONDER ends with a set of assumptions about WONDER in
Section 4.8.2. The purpose of these assumptions is to determine whether WON-

202

7.1. THE THESIS IN A NUTSHELL

DER satisfies all the requirements and suggestions presented in Section 3.5.3.
The assumptions are used in Section 6.5 to reflect on the results of the SHIP-
SHAPE case study. Table 6.18 on page 198 summarizes all the assumptions and
their results.

Of the fifteen assumptions, six are true and six are mostly true. This shows
that for the most part WONDER does live up to the requirements on which these
assumptions are based, even though in some cases additional improvements
can be made.

Assumption 8 is false. Crucial design information was kept outside of
WONDER during the design process. Not all the information needed during
the design process is captured by WONDER’s representations. This is not listed
as a requirement, though. The assumption can be traced back to the discussion
about design tools. There is an implicit assumption that the design tool should
cope with all aspects of the early design phase, but this need not be the case, as
long as it is clear what is and what is not covered by WONDER. Investigating
this assumption has made that clear.

Assumption 5 is undecided. This classification is due to the action concept,
which was not used much in the SHIPSHAPE case. Looking at the workspace
and material concepts alone this assumption would be classified as mostly true.
The action concept is simply not the right level of abstraction at this phase of
the design process.

Assumption 11 can not be answered because the SHIPSHAPE case has not
yielded enough information on this issue. The constituency of the design team,
and the way the roles had to be assigned make it quite hard to determine ex-
actly whether the roles and responsibilities as they are presented in Table 4.5 on
page 121 are right. In general it seems as if in the SHIPSHAPE case these roles
and responsibilities mostly matched those presented in WONDER, but because
each design team member had several different roles to take care of this can
not really be determined. Further study is needed to provide a clear answer,
preferably in a situation where each person has only one role.

7.1.3 Reflecting the assumptions onto the research questions

In the previous section it has become clear that WONDER does satisfy the re-
quirements posed for it. This gets us back to the research questions. Does
WONDER also provide answers for these questions?

How can we formulate the design activity for interactive systems which
facilitate ill-structured work?

203

CHAPTER 7. CONCLUSIONS

WONDER is the answer to this research question, as it provides a formula-
tion for the design activity with a focus on ill-structured work. This research
question is answered positively in this thesis in Chapter 4.

How can ill-structured work be described explicitly during design without
reverting to interface components?

The concept of a workspace with materials and tools is the answer to this
question. It could be argued that this is not really an explicit description.
In Section 3.2.4 it is made clear that an explicit description of the actual ill-
structured work itself is not possible. If it were, then the work would not be
ill-structured. The materials and tools in a workspace are used to describe the
effects and possibilities for the ill-structured work as closely as possible, with-
out describing the actual work itself. The materials signify the information
used as input and output of the work, and the tools signify operations on these
materials that are needed as part of the work.

In WONDER’s representations materials and tools are still somewhat ab-
stract entities. No decision has been made at this point how to represent them
in the user interface. At this point it is only clear that they need to appear in
one way or another. No interface components are used in WONDER.

How can it be ensured that the formulated design activities and representa-
tion of ill-structured work provide a usable, workable, and fitting solution
toward the design of interactive systems facilitating ill-structured work?

Usable in this question means whether the design activities and the design
representation can be used by the design team. Assumption 10 asserts this: all
the design team members could work with WONDER. Another positive indica-
tor is assumption 9, which asserts that for the most part the design activities as
they are described in WONDER were followed during the SHIPSHAPE case.

Whether WONDER is workable, i.e. whether the activities and representa-
tions fit into the design process, is addressed by assumption 14, which asserts
that using WONDER is worth the time. Furthermore, the WONDER representa-
tions were a good starting point for the creation of the prototype described in
Section 6.4.1.

The final part of this research question asks whether WONDER is fitting, i.e.,
whether the activities and representations yield the desired results. Assump-
tions 1, 2, and 3 assert that WONDER yields the results it should accomplish.
Also, assumption 15 indicates that WONDER yields results at least similar to
other methods.

204

7.2. REFLECTION ON THE RESEARCH

In summary, it appears that WONDER does fulfill the research questions.
Additional improvements are possible, as outlined in Section 7.3, but overall
WONDER provides a good answer to the research questions of this thesis. The
use of WONDER on a real and complex design problem has given a lot of insight
into the actual use of WONDER, and in this way it has provided a very valuable
translation from a chapter full of theory to the practical problems experienced
in the trenches of interactive systems design.

7.2 Reflection on the research

This research looks at a small and well-defined portion of the world so that
the research can be conducted. However, the results and findings should not
be seen as separated from our real world. This section attempts to define this
broader context by describing the consequences of this research, by providing
a broader look at the research, and by revisiting the paradigm underlying the
research questions.

7.2.1 Consequences of the research

WONDER Evaluation of WONDER can focus on the principles behind it, or on
the tool itself. The principles are discussed in the next paragraph. WONDER as
a tool could need additional improvements before being used by design teams
for interactive systems, as discussed in Section 5.3.2. This fits with the focus of
the research. The whole purpose of creating WONDER as part of this research
was not to create the ideal design tool, but rather to validate principles and
ideas behind it, and to allow exploration of the early design process. Future
research might want to extend WONDER to look at additional principles, or
determine how these principles can be incorporated best into a design tool for
interactive systems designers.

The principles behind WONDER It is much more important for the princi-
ples and ideas behind WONDER to have impact. These principles and ideas all
relate to the degree of control we want and need to have. It is easy to not
want to have any control, any responsibility, but this also leaves us without ac-
countability and ultimately without any sense of accomplishment. Gaining full
control provides the opposite, usually becoming harder as the target to be con-
trolled comes in sight ever more closely, but never fully, under control. Both

205

CHAPTER 7. CONCLUSIONS

approaches leave much to be desired, and the real challenge is not to attain
either one of them, but rather to find the precarious balance in the middle.

This is done in WONDER by acknowledging that ambiguity and inconsis-
tency are normal elements of the design process. Therefore they are given a
place in the design representations, even though the goal in the evolution of
these representations is to get rid of ambiguity and inconsistency as much as
possible. Furthermore, WONDER shows that more structure can be used to
make the early design process more explicit.

One strong idea behind WONDER is that the people who will end up using
the interactive systems are valued more. This is expressed by investing more
effort into finding actual solutions for ill-structured work. Too often this is
not done. Instead the work is structured to death, leaving people fighting a
system instead of working with it. Or the designers throw their hands in the
air, decide on a way to cram all the functionality into a system which looks
nice, and hope for the best, thus leaving people without many clues as to how
to be productive.

7.2.2 A broader look

WONDER’s aim WONDER is primarily aimed at designing large and complex
interactive systems which support ill-structured work. The benefits of using
WONDER really only pay off if the design becomes too large or complicated at
this stage of the design process to keep in one’s head all the time. This is not
a design flaw, but rather a consequence of some of the decisions leading up to
the design of WONDER. In light of this aim it is interesting to see how WONDER
deals with recent developments in creating interactive systems.

The Web It certainly is clear that the WWW more and more is becoming an im-
portant interface for interactive systems. Sometimes it is a front-end to talk to
legacy terminal-based systems in the back-office over the intranet, other times
an easy way to communicate directly with your bank’s systems for stock trad-
ing over the internet. At any rate the web provides a flexible way to unlock
all kinds of systems and processes in a somewhat uniform way. Somewhat,
because what is shown in the web browser’s window is often anything but
uniform.

This would not be a problem if the WWW would simply be used as an im-
plementation platform along with for example back-office systems to create a
single interactive system. While this is done on occasion, the trend is to cre-

206

7.2. REFLECTION ON THE RESEARCH

ate applications and environments based on all kinds of components offered
by Application Service Providers. Using WONDER as a design tool would be
very hard in these cases. For instance, the formal design process often gets
distributed, sometimes even down to the individual users who have to select
those components they think they need to use.

At first sight this might be interpreted in a positive way, because people
can select their own workspace in detail. However, two other things present
in WONDER are not being dealt with in this case. First, the activities in WON-
DER are separated from the workspaces because the activities provide the com-
munication between different workspaces. If these materials are not uniform
between workspaces, even if used in different ways in different workspaces,
use of the system will become very confusion or even impossible. Second, ac-
tions would warrant a more prominent role than in the SHIPSHAPE case. When
components from different sources are being combined, it is no longer logical
to assume that they will match well without any explicit effort. Standardizing
the basic actions will help to create a more usable system.

7.2.3 WONDER and the underlying paradigm

Section 1.3 contains a paradigm which underlies the research questions posed
in the same section. Some issues regarding this paradigm have already been
discussed in Section 7.2.1. This paradigm is:

An interactive system should be designed as a whole; the leading perspec-
tive during design should be that of its users.

The paradigm hinges on two thoughts: that interactive system design is a
holistic practice, and that the perspective of the users should always be leading
during design. WONDER embodies these two thoughts. The actual start of the
design process is carried out within WONDER’s context, shaping all of the rest
of the design, including the technology needed to implement it. The latter
is accomplished, for instance, by the definition of the materials, which will
often lead to a similar data model. The focus on workspaces takes a strong
perspective on the people who will need to use the system. It does not put
them in control right from the start of the design process, but that is not what
the paradigm is about. It also does not mean that the user perspective should
always win, because there are many more viewpoints which need to be taken
into account.

207

CHAPTER 7. CONCLUSIONS

7.3 Future research

The research presented is also another starting point for additional investiga-
tion into the complex and interesting field of interactive systems design. Cer-
tainly enough starting points for additional research can be found in this thesis.

Extending WONDER While WONDER’s representations worked well enough,
using only text is not sufficient, so WONDER’s representations should be ex-
tended to also include graphics were appropriate. Perhaps other media should
also be included. While ruled out because of the technical requirements at the
time, in 2001 both audio and video clips have become a possibility also. Re-
search into their usefulness to augment the design process would be useful.
For instance, would short video clips of the circumstances of real planners try-
ing to reach some goal not be a better description of the context than a text
field?

Task Analysis currently has no place in WONDER, apart perhaps from the
goal hierarchies. For those parts of the system that support well-structured
work, task hierarchies might be useful. They would give the design a bit more
stability and a bit less ambiguity, which is not a bad thing once the workspaces
stabilize. The tools in particular should lend themselves to a description of
tasks to be carried out with them. Whether or not this would be a useful exten-
sion would have to be investigated.

Using WONDER Also, a re-evaluation of WONDER based on the SHIPSHAPE
case would be in order. For instance, is the action really superfluous at this
stage in the design process as it would seem, or does it make sense when WON-
DER is applied to another case? The task structures also need another look. But
to make good judgments for any of these possible changes, it is really impor-
tant that WONDER is used in several additional cases. Only then will the real
strengths and weaknesses become apparent.

Furthermore, as the first pages of this thesis already commemorate, com-
puting devices become smaller and more ubiquitous all the time. With network
developments such as Bluetooth all these devices can form a single ‘workspace’
in whatever constellation is useful at the time. Will WONDER’s design concepts
become stronger because of this, or will the way of thinking break once the
interactive system is moved off of the desktop?

208

7.3. FUTURE RESEARCH

Redesigning WONDER WONDER as it is now has been put together based on
analysis. The research instrument which allows working with WONDER has
not been designed rigorously. One important thing which could lead to new
insights is to look at the needs of real world design teams more closely, in light
of the lessons learned with WONDER, and the principles underlying it.

Comparison with Contextual Design The development of Contextual In-
quiry into Contextual Design, which happened in parallel with the develop-
ment of WONDER, is also interesting [BH98]. In particular the User Environment
Design model has a lot of things in common with WONDER. A comparison of
the features and names in both models would be interesting, as would the use
of both WONDER and Contextual Design on the same case.

The design process after WONDER Another point of investigation is what
the design process should look like after initially using WONDER. Section 4.7
makes some allusions to scenario-based design, the use of prototypes, or the
use of design space analysis. Which one works best, and which adaptations
can be made to WONDER is not clear at this point. Scenarios have already been
used in progressive design [GCR98], and it would be interesting to see how
this matches with the evolution within WONDER’s representations.

209

CHAPTER 7. CONCLUSIONS

210

APPENDIX A

Structure and operation of DIANA

This appendix describes some of the structure and operation of DIANA, pro-
viding background to Chapter 2.

A.1 Overview

The existing implementation of DIANA is batch-oriented. Users create a num-
ber of plain text files which describe the models, meshes, constraints, and anal-
ysis to be run on those models. These input files are fed into DIANA, which
analyses the files and passes them on to the relevant internal modules. These
modules carry out the actual work.

An overview of the user environment can be seen in Figure A.1 on the fol-
lowing page [TNO91]. Figure A.2 on page 214 shows the relations between
the user, the system, and the files. The user creates two types of files: input
files (.DAT) and command files (.COM). The user will use manuals and pos-
sibly a pre-processor to prepare these files. The input files describe the model,
mesh and additional constraints. The command file describes the computa-
tions which need to be carried out and their parameters. Each of these files is
parsed by DIANA in turn, and processed by the appropriate modules. DIANA

211

APPENDIX A. STRUCTURE AND OPERATION OF DIANA

can use two types of intermediate files. The internal database FILOS (File Orga-
nization System) holds intermediate results, meshed models, etc. Optionally
DIANA can read and write so called ‘neutral files’. These neutral files are writ-
ten in an open specification language based on the IGES standard, and can be
used to exchange data with other software packages.

User

Control

M1 M3 M4

Interface

Database

M2

Figure A.1: DIANA’s user environment

DIANA can generate two types of files: output files (.OUT) and plot files
(.PIC). The output files contain the textual results of all the modules which

were run during the session. This output contains error messages, warnings,
tables with numerical results, etc. The plot files contain numerical results as
well, but in a format which can be visualized with an appropriate program.

Pre- and post-processors are external programs which can be used with DI-
ANA. Pre-processors are used before DIANA calculations are made. They sup-
port creating a model, mesh, and associated constraints. Some pre-processors
allow the user to create such a model interactively through a graphical inter-
face. These model definitions are then imported into DIANA through the neu-

212

A.2. WORKING WITH DIANA

tral file interface.
Post-processors serve a similar goal, but they operate on computational re-

sults from DIANA. Post-processors can be used to do further calculations based
on DIANA’s results, but most often post-processors serve to visualize the results
in some graphical way.

A.2 Working with DIANA

In this section some comments are presented on the consequences of the archi-
tecture of DIANA. This is followed by some examples of input files.

Architecture The control layer in Figure A.1 may suggest a strongly con-
trolled system, but this is only true when it comes to controlling the running of
modules. All of the application logic is contained in the modules. This leads
to a very decentralized system, where each module has complete control over
what it does. The file store is used to communicate between different modules.
For instance, one module calculates a value and drops it into the file store. A
while later another module picks that value up from the file store, and per-
forms additional calculations on it, again dropping the results in the file store.

This architecture makes sense in a batch system, as explained in Chapter 2.
It also makes sense when the development of DIANA is taken in consideration.
DIANA also serves as a framework for fundamental research into finite element
analysis calculations. Using this modular structure, individual researchers can
work on their module without bothering other parts of the system. Once the
module is done, it can be dropped in the working system, again without many
dependencies on other parts of the system. This provides a very flexible devel-
opment environment.

Input files An example of the effect of this modular system approach for the
end user can be found in the input files in which a calculation is configured.
The input files have a very specific format, which is described in an exten-
sive set of manuals. The syntax description contains many optional, mutually
exclusive, or mandatory choices for each of the commands. Together, these dif-
ferent options allow a wide variety of input, while still being very strict about
which combinations are valid. This section contains examples of load calcula-
tion.

213

APPENDIX A. STRUCTURE AND OPERATION OF DIANA

Figure A.2: DIANA program structure

214

A.2. WORKING WITH DIANA

Setting up a load calculation The first two figures show setting a load cal-
culation. This indicates how a load will be calculated. Figure A.3 contains
a syntax description for setting parameters for a load calculation. Figure A.4
contains an example of these settings.

*LOADS

[INITIA [MC=mlosetn]]

[SETUP]

[SELECT _______________ /] ...

LOADS losetsn...

NODES nodesng...

[PRINT{.SXRD}{___________}]

NODES{.NCD}

Figure A.3: Syntax specification for load calculation

The description shows some of the complexity of the syntax used in DI-
ANA’s input files. The order in the input file is fixed, and can not be changed.
Square brackets indicate optional steps. Each step represents a segment to be
executed, and possibly its arguments. For instance, the INITIA (initialize)
command can take an optional argument which denotes the maximum num-
ber of load sets. The SELECTsegment has a mandatory argument, which can
be either a LOADSor NODESparameter. The ellipsis denotes that this option
can occur several times, while the slash indicates the end of the arguments for
that option.

The example in Figure A.4 does not look very complicated. The calculation
is initialized with 10 load sets, then it is set up, and then a number of loads
are selected and calculated for a number of nodes. Finally the results for this
calculation are printed. It is not hard to think of a graphical user interface for
this input file. When looking back at the specification in Figure A.3, however,
it becomes clear that the input file could have looked different as well. Keep
in mind that this is a very simple example. Much more complex input files are
needed for real-world calculations, using many more of the options. Imagining
a graphical user interface for 20 options, each of which is optional, and some

215

APPENDIX A. STRUCTURE AND OPERATION OF DIANA

*LOADS
INITIA MC=10
SETUP
SELECT LOADS 1 3 5 /
SELECT NODES 20-60 /
PRINT.S NODES

Figure A.4: Example specification for load calculation

of which are mutually exclusive, becomes much harder already.

Defining the load To complicate things further, certain fields are defined
based on column position in the input lines. One, two, or three fields can
be used on a single line, and each fields must start in the proper column for
that field. As an additional constraint, each line has a maximum width of 80
characters. Figure A.5 describes the input format for a load specification, while
Figure A.6 shows an actual example of it. The LOADSspecification has three
arguments per (range of) elements. These three arguments are placed in three
fields, starting at columns 1, 6, and 13.

’LOADS’

ELEMEN [MA=maxelon]

%1___5 6_____12 13_______________80

elemn lodnamw loddat?

%1___5 6_____12 13_______________80

/ elemsng... /

lodnamw loddat?

Figure A.5: Syntax specification for load specification

The manuals contain many syntax specifications for specific input. Exam-
ples of such specifications are shown in Figure A.3 on the preceding page and

216

A.2. WORKING WITH DIANA

Figure A.5 on the preceding page. Dependencies between the different spec-
ifications are not detailed, however. For instance, when specifying the loads
computation, either load sets or nodes can be selected. It seems obvious that
those nodes need to exist, but this requirement is not listed in the manuals.
While this particular example is a trivial example, more complex dependen-
cies can also exists. The only place where they are specified reliably is in the
source code for each module.

’LOADS’

ELEMEN
8 EDGE ETA1

FORCE 10. 15.

/ 9-32 /
EDGE ETA2
FORCE 25.

Figure A.6: Example of load specification

Thus, changing a module has effect on what is a valid input file. If that
changed module is called in the input files, then it will influence what is valid
syntax. Including all of this flexibility into a graphical user interface is possible,
but it also makes it very hard to provide enough support for what the user
actually tries to accomplish.

One example of this came out of the interviews with users. Users like to
use the visualization loop, where they iterate between making changes to the
model and visualizing the results of these changes. This can only be supported
well when changes to the graphical output can be made easily and quickly. In
DIANA, however, the visualization module, like all other modules, is controlled
by a DIANA input file. Even if the same FILOS image can be used for each vi-
sualization, the user still needs to modify the input file, run it through DIANA,
and pass the output to the visualization system for even the smallest change,
such as a small change of viewpoint. This roundabout way totally destroys the
iterative nature of the problem solving process, and will result in less visual-
izations being made, even if this degrades the problem solving process. Some
interviewees in fact told us they did not make as many visualizations as they
would like for exactly this reason.

217

APPENDIX A. STRUCTURE AND OPERATION OF DIANA

218

APPENDIX B

PSM notation

Figure B.1 on the following page contains an overview of the graphical con-
ventions of the Predicator Set Model (PSM) modeling technique. [tH93].

219

APPENDIX B. PSM NOTATION

L is a label type(L)

E E is an entity type

E
(L)

entity type E is
identified by
label type L

role

binary relationship type

binary relationship type
represented as an
object type

B

B is a collection type

with element type A

B is a sequence type

with element type AA

B

A

B

B

B

A

A

A

f

C is a schema type with

object types A , B and f

in its decomposition

A is a generalization of B

B is a specialization of A

C

Figure B.1: PSM Graphical notation

220

APPENDIX C

WONDER representations for SHIPSHAPE

This appendix contains examples of WONDER representations taken from the
design for SHIPSHAPE. A more complete and interactive version can be found
online at http://degraaff.org/thesis/shipshape/ . Chapter 6 con-
tains an overview of the SHIPSHAPE case. Please refer to that chapter for addi-
tional information and context. The WONDER representations are discussed in
Section 4.3.

C.1 SHIPSHAPE example workspace

Maintain scopes

Goal Many planning operations need only to work on a particular sub-
setof the complete plan. Such a subset is called a plan scope.

Context A scope is a small subset of a particular plan domain.
Enclosed in Maintain plan
Contains (none)
Works with Maintain plan versions

221

APPENDIX C. WONDER REPRESENTATIONS FOR SHIPSHAPE

Materials

Plan scope The available scopes within a plan domain

Plan elements The plan elements which make up a particular scope: activities, resources,
skills, projects, time window

Interaction The interaction takes place with two different points of focus: the
collection of current scopes (at which point their contents is not
of paramount importance), and the region of a plan which will
become a new scope. In this case the contents of the scope is very
important, and should be visible.

Tools

Select scope elements select ?: all elements which should be part of the new scope,
such as Activity, Resource, Skill, Project, Time.
Elements can be selected using several selection criteria. Exact
criteria currently not specified yet.

Create scope create ?: a new Plan scope, given the selected elements. When
creating a scope elements or constraints (such as a time window)
can be added at will. The following default should be possible:
Empty scope; elements limited by time-window from higher
plan domain (e.g. project); elements with available capacity at
higher plan domain level; elements with available capacity at
particular resource level; elements with unallocated capacity.

Delete scope delete ?: selected scope (but, obviously, not the elements within
it).

Show scope elements Show the scope elements in the plan domain. (This option de-
pends on a standard plan domain view, which currently is not
being designed. Note that views will also be able to show scope
elements.)

Join scopes Join two scopes, and create a new scope with all elements from
both original scopes.

Intersect scopes Create a new scope, which contains the common elements of
both original scopes.

222

C.2. SHIPSHAPE EXAMPLE MATERIAL

Add/delete elements Add elements to scope, or delete them from the scope.

Update scope contents
based on specification
criteria

Re-apply the specification criteria to update the elements in the
scope.

Browse scope ele-
ments

Browse through elements of a scope (e.g. with a list). Also show
context of elements (e.g. in view)

Scope status Show the status of the activities in the scope, using the activity
panel.

Remarks We need some concept to denote subsets of the complete plan.
These subsets are used throughout planning, in a variety of ways.
The plan scope will be this concept, but it needs further definition
before it can be fully applied in the design. A better name for a
plan scope might be a region.

C.2 SHIPSHAPE example material

Plan scope

Description A plan scope is a selected part of a plan. It remains within a sin-
gle plan domain, but selects a number of activities, resources and
skills within a time window in this plan domain. A plan scope is
used to limit the working area for other planning tools within a
plan domain.

Current No plan scope is being used.
Example A plan scope which contains all welding activities for the Hall 1

resource.

Associations

Project A project is implicitly available through its activities, but it might also be
used directly as a shortcut.

223

APPENDIX C. WONDER REPRESENTATIONS FOR SHIPSHAPE

Attributes

name Identification only

date created Set by system; informational only.

time window Time window between two dates. Only elements which fall within this
time window are shown.

selection crite-
ria

Specific selection criteria, such as projects matching X, activities matching
Y, etc.

follow changes
in selection

When changes occur in the plan, a mismatch between the selection cri-
teria and the actual elements may occur. This option indicates whether
the elements should always be according to the selection criteria, or only
initially. Note that this option might be very expensive, computing-wise!

Activity (1-600) The activities which are part of this list. One or more sets of connected
activities.

Resource (??) One or more resources.

Skill One or more skills.

Phase 2 (none)
Remarks

The plan scope is one of the central concepts in the planning sys-
tem. Its representation and interaction are very important accross
the different workspace. Because the scope occurs in many work-
spaces, it needs to be consistent throughout them.

224

Bibliography

[ADO94] B. Beth Adelson, Susan Dumais, and Judith Olson, editors.
CHI’94 Human Factors in Computing Systems, Boston, 1994. ACM,
ACM Press.

[AIS77] Christopher Alexander, Sara Ishikawa, and Murray Silverstein.
A Pattern Language. Oxford University Press, 1977.

[Ale64] Christopher Alexander. Notes on the synthesis of form. Harvard
university Press, 1964.

[Ale79] Christopher Alexander. The timeless way of building. Oxford Uni-
versity Press, 1979.

[ALMN99] David Avison, Francis Lau, Michael Myers, and Peter Axel
Nielsen. Action research. Communications of the ACM, 42(1):94–
97, January 1999.

[Ano] Anonymous. Goldylocks and the three bears.

[APS90] Chris Argyris, Robert Putnam, and Diana McLain Smith. Action
Science. Jossy-Bass Publishers, San Francisco, 1990.

[Arg80] Chris Argyris. Inner contradictions of rigorous research. Academic
Press, 1980.

225

BIBLIOGRAPHY

[Ban95] Liam Bannon. The politics of design. Communications of the ACM,
38(9):66–68, September 1995.

[Bas93] Len Bass. Architectures for interactive software systems: Ra-
tionale and design. In Len Bass and Prasun Dewan, editors,
User Interface Software, number 1 in Trends in Software, chap-
ter 2, pages 31–44. John Wiley & Sons Ltd., 1993.

[BB91] Liam J. Bannon and Susanne Bødker. Beyond the interface: en-
countering artifacts in use. In John M. Carroll, editor, Designing
interaction: psychology of Human-Computer Interaction, chapter 6,
pages 227–253. Cambridge University Press, 1991.

[BB92] Sunny Baker and Kim Baker. On time/On budget: A step-by-step
guide for managing any project. Prentice Hall, 1992.

[BB99] Jacob Buur and Kirsten Bagger. Replacing usability testing with
user dialogue. Communications of the ACM, 42(5):63–66, May
1999.

[BC85] Lorriane Borman and Bill Curtis, editors. CHI’85 Human Factors
in Computing Systems, San Francisco, 1985. ACM, ACM Press.

[BCNS92] Reinhard Budde, Marie-Luise Christ-Neumann, and Karl-Heinz
Sylla. Tools and materials: an analysis and design metaphor.
In G. Heeg, B. Magnusson, and B. Meyer, editors, Tools-7, Tech-
nology of Object-Oriented Languages and Systems, pages 135–146.
Prentice Hall, 1992.

[BD96] Graham Button and Paul Dourish. Technomethodology: Para-
doxes and possibilities. In Michael J. Tauber, editor, Proceed-
ings of the CHI ’96 conference on Human Factors in Computing Sys-
tems, Human Factors in Computing Systems, pages 19–26. ACM
SIGCHI, ACM Press, 1996.

[BH98] Hugh Beyer and Karen Holtzblatt. Contextual Design: Defin-
ing Customer-Centered Systems. Interactive Technologies. Morgan
Kaufmann, 1998.

[BHvdMS93] P.A.J. Brijs, T.S. Hoek, C.A.P.G. van der Mast, and G.J.F. Smets.
Designing in virtual reality: Modelling objects in a virtual envi-
ronment (move). Technical Report DUT-TWI-93-91, Delft Uni-
versity of Technology, 1993.

226

BIBLIOGRAPHY

[Blo95] Jeanette L. Blomberg. Ethnography: Aligning field studies of
work and system design. In Andrew F. Monk and Nigel Gilbert,
editors, Perspectives on HCI: Diverse Approaches, pages 174–197.
Academic Press, 1995.

[Bot89] Pieter W.G. Bots. An environment to support problem solving. PhD
thesis, Delft University of Technology, 1989.

[Bry93] Erik Brynjolfsson. The productivity paradox of information
technology. Communications of the ACM, 36(12), 1993.

[BSMH95] Victoria Bellotti, Simon Buckingham Shum, Allan MacLean, and
Nick Hammond. Multidisciplinary modelling in hci design... in
theory and in practice. In Proceedings of the CHI’95 conference on
human factors in computing systems, pages 146–153, Denver, CO,
1995. ACM SIGCHI, ACM Press.

[But96] Keith A. Butler. Usability engineering turns 10. interactions,
3(1):58–75, 1996.

[Bux94] William Buxton. The three mirrors of interaction: a holistic ap-
proach to user interfaces. In L.W. MacDonald and J. Vince, edi-
tors, Interacting with virtual environments. Wiley, New York, 1994.

[cac96] Communications of the acm, 1996. The issue on technology
transfer.

[CAH87] Stuart K. Card and Jr. Austin Henderson. A multiple, virtual-
workspace interface to support user task switching. In Proceed-
ings of CHI+GI 1987, pages 53–59, Toronto, April 1987. ACM.

[Car94] John M. Carroll. Making use a design representation. Communi-
cations of the ACM, 37(12):29–35, 1994.

[Car95] John M. Carroll, editor. Scenario-based Design. John Wiley & Sons,
Inc., 1995.

[Car96] John M. Carroll. Artifacts and scenarios: an engineering ap-
proach. In Andrew F. Monk and Nigel Gilbert, editors, Perspec-
tives on HCI: Diverse Approaches, pages 121–144. Academic Press,
1996.

[Che81] P. Checkland. Systems thinking, systems practice. Wiley, 1981.

227

BIBLIOGRAPHY

[CK89] John M. Carroll and Wendy A. Kellogg. Artifact as theory-nexus:
Hermeneutics meet theory-based design. In Proceedings of ACM
CHI’89 Conference on Human Factors in Computing Systems, pages
7–14, 1989.

[CMN83] S.K. Card, T.P. Moran, and A. Newell. The psychology of human-
computer interaction. Erlbaum, Hillsdale, 1983.

[CO88] John M. Carroll and Judith Reitman Olson. Mental models in
human-computer interaction. In Martin Helander, editor, Hand-
book of Human-Computer Interaction, pages 45–65. North-Holland,
New York, NY, 1988.

[Col84] H.M. Collins. Researching spoonbending: Concepts and prac-
tice of participatory fieldwork. In C. Bell and H. Roberts, edi-
tors, Social Researching: Politics, Problems, Practice, pages 54–69.
Routledge & Kegan Paul, London, 1984.

[Cro89] Nigel Cross. Engineering design methods. John Wiley & Sons, Ltd.,
1989.

[CY79] Y.K. Cheung and M.F. Yeo. A practical introduction to finite element
analysis. Pitman, 1979.

[Dan81] George Daniels. Watchmaking. Sotheby Publications, 1981.

[dB95] Levien de Braal. Perfuse: a medical expert system user interface
prototype. Master’s thesis, Delft University of Technology, 1995.

[DFAB93] Alan Dix, Janet Finlay, Gregory Abowd, and Russel Beale.
Human-Computer Interaction, chapter Task analysis, pages 221–
250. Prentice Hall, 1993.

[dG92] Johannes J. de Graaff. Context-sensitive help as an integral part
of a user interface design environment. Master’s thesis, Delft
University of Technology, October 1992.

[dG93] J.J. de Graaff. Tno-project: Uitwerking vragenlijst interactieve
interface voor diana. Technical Report 93-NM-R0934, TNO,
1993. In Dutch.

[dG94] J.J. de Graaff. Results from a user study for diana’s interactive
interface. Technical Report 94-NM-D047, TNO, 1994.

228

BIBLIOGRAPHY

[dGGP97] Johannes J. de Graaff, Abraham Guyt, and Martin Postma. Een
presentatie en demonstratie van een nieuwe planningsstrategie
voor scheepswerven. CD-Rom, 1997. Unpublished, In Dutch,
Working title subject to change.

[DH86] Jr. D.A. Henderson. The Trillium user interface design environ-
ment. In Proceedings of SIGCHI ’86, Human Factors in Comput-
ing Systems, pages 221–227, Boston, 1986. ACM.

[Dia89] Dan Diaper. Task analysis for human-computer interaction. Ellis
Horwood, 1989.

[Dia92] Diana world. DIANA Analysis BV, 1992.

[Dia00] Diana analysis bv website, 2000. http://www.diana.nl/ .

[Dic93] B. Dick. A beginner’s guide to action research. Arcs Newsletter,
1(1):5–9, 1993.

[DIN87] Teil 8: Bildschirmarbeitsplätze. grundsätze der dialoggestal-
tung. DIN 66234 standard, 1987.

[Dix90] Alan Dix. Non determinism as a paradigm for understanding
the user interface. In M. Harrison and H. Thimbleby, editors,
Formal methods in human-computer interaction, chapter 4, pages
97–127. Cambridge university press, 1990.

[Dix95] Alan J. Dix. Formal methods. In Andrew F. Monk and Nigel
Gilbert, editors, Perspectives on HCI: Diverse Approaches. Aca-
demic Press, 1995.

[Dra93] Stephen W. Draper. The notion of task in hci. In InterCHI’93
Adjunct proceedings, 1993.

[dV95] G.J. de Vreede. Facilitating organizational change: the participative
application of dynamic modelling. PhD thesis, Delft University of
Technology, 1995.

[ea83] W. Buxton et al. Towards a comprehensive user interface man-
agement system. In SIGGRAPH ’83: Computer Graphics, pages
34–42, 1983.

229

BIBLIOGRAPHY

[Eri] Thomas Erickson. Supporting interdisciplinary design: To-
wards a workplace pattern language. To appear in “Workplace
Studies”, pre-print from the Web at http://www.research.
apple.com/people/Tom_Erickson/Patterns.html .

[Fit54] P.M. Fitts. The information capacit of the human motor system
in controlling amplitude of movement. Journal of Experimental
Psychology, 47:381–391, 1954.

[FKKM91] James D. Foley, W.C. Kim, S. Kovacevic, and K. Murray. Uide
- an intelligent user interface design environment. In J. Sulli-
van and S. Tyler, editors, Architectures for intelligent interfaces:
Elements and Prototypes, chapter 15, pages 339–384. Addison-
Wesley, 1991.

[FLMM90] Gerhard Fischer, Andreas C. Lemke, Thomas Mastaglio, and An-
ders I. Morch. Using critics to empower users. In Proceedings of
ACM CHI’90 Conference on Human Factors in Computing Systems,
pages 337–347, 1990.

[FNO95] Gerhard Fischer, Kumiyo Nakakoji, and Jonathan Ostwald. Sup-
porting the evolution of design artifacts with representations of
context and intent. In Gary M. Olson and Sue Schuon, editors,
Symposium on Designing Interactive Systems: Processes, Practices,
Methods & Techniques, pages 7–15. ACM Press, 1995. DIS ’95 Con-
ference Proceedings.

[FPB95] Jr. Frederick P. Brooks. The mythical man-month. Addison-Wesley,
20th anniversary edition edition, 1995.

[FRW+95] G. Fischer, D. Redmiles, L. Williams, G.I. Puhr, A. Aoki, and
K. Nakakoji. Beyond object-oriented technology: where current
approaches fall short. Human-Computer Interaction, 10(1):79–119,
1995.

[FT89] George A. Ferguson and Yoshio Takane. Statistical Analysis in
Psychology and Education. Psychology Series. McGraw-Hill, in-
ternational edition edition, 1989.

[FvDea82] James D. Foley and A. van Dam et al. Fundamentals of Computer
Graphics. Addison-Wesley, 1982.

230

BIBLIOGRAPHY

[FW74] James D. Foley and Victor L. Wallace. The art of natural graphic
man-machine conversation. Proceedings of the IEEE, 64(4), April
1974.

[GCR98] Jr. George Chin and Mary Beth Rosson. Progressive design:
Staged evolution of scenarios in the design of a collaborative
science learning environment. In Steven Pemberton, editor, Hu-
man Factors in Computing Systems, CHI 98 Conference Proceedings,
pages 611–618. ACM SIGCHI, ACM Press, 1998.

[GHJV94] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlis-
sides. Design Patterns: Elements of Reusable Object-Oriented Soft-
ware. Addison-Wesley, 1994.

[Gib79] J.J. Gibson. The ecological approach to visual perception. Houghton-
Mifflin, 1979.

[GK91] Joan Greenbaum and Morton Kyng. Design at work: cooperative
design of computer systems. Lawrence Erlbaum, 1991.

[Gla95] Robert L. Glass. Software creativity. Prentice Hall, 1995.

[Gor95] Peter Gorny. Expose: Hci-counseling for user interface design.
In Proc. Interact ’95. IFIP, 1995.

[Gou88] John D. Gould. How to design usable systems. In Martin He-
lander, editor, Handbook of Human-Computer Interaction, chap-
ter 35, pages 757–789. North-Holland, New York, NY, 1988.

[Gre86] Mark Green. A survey of three dialogue models. ACM Transac-
tions on Graphics, 5(3), 1986.

[Gre91] Siegfried Greif. The role of German work psychology in the de-
sign of artifacts. In John M. Carroll, editor, Designing interaction:
psychology of Human-Computer Interaction, chapter 6, pages 203–
226. Cambridge University Press, 1991.

[Guy92] A. Guyt. Data input/data carrying methoden en middelen op
scheepswerven. Masters thesis, Delft University of Technology,
Delft, 1992.

[Guy95a] Abraham Guyt. Besturingsontwerp. In Dutch, unpublished,
1995.

231

BIBLIOGRAPHY

[Guy95b] Abraham Guyt. A production management support tool: func-
tional specification. Unpublished, 1995.

[Guy95c] Abraham Guyt. Takenoverzicht besturingsontwerp. Project doc-
umentation, In Dutch, 1995.

[Guy01] Abraham Guyt. Shipyard planning. PhD thesis, Delft University
of Technology, 2001. Forthcoming.

[GVQD93] P. Gorny, A. Viereck, L. Qin, and U. Daldrup. Slow and princi-
pled prototyping of usage surfaces: a method for user interface
engineering. In Proceedings of RE ’93 — Prototyping, pages 125–
133, April 1993.

[Ham90] Michael Hammer. Reengineering work: don’t automate, obliter-
ate. Harvard business review, pages 104–112, July-August 1990.

[Har96] Morten Borup Harning. An approach to structured display de-
sign: Coping with conceptual complexity. In J. Vanderdonckt,
editor, Computer-Aided Design of User Interfaces, pages 121–138,
Namur, Belgium, June 1996. Presses Universitaires de Namur.
Proceedings of the 2nd International Workshop on Computer-
Aided Design of User Interfaces CADUI ’96.

[HB95] Lorin Hitt and Erik Brynjolfsson. Productivity without profit?
three measures of information technology’s value. MIS Quar-
terly, 1995.

[HB96] Karen Holtzblatt and Hugh Beyer. Field methods casebook for soft-
ware design, chapter Contextual design: principles and practice.
John Wiley & Sons, New York, 1996.

[HD81] D.R. Hofstadter and D.C. Dennett, editors. The mind’s I. Basic
Books, Inc., 1981.

[Hec91] P. Heckel. The elements of friendly software design. SYBEX, 1991.

[HH89] H. Rex Hartson and Deborah Hix. Toward emperically derived
methodologies and tools for human-computer interface devel-
opment. Int. J. Man-Machine Studies, pages 477–494, 1989.

232

BIBLIOGRAPHY

[HH93] Deborah Hix and H. Rex Hartson. Developing user interfaces: en-
suring usability through product and process. Wiley professional
computing, 1993. Textbook for a326 course.

[HKM+95] Larry F. Hodges, Rob Kooper, Thomas C. Meyer, Barbara O.
Rothbaum, Dan Opdyke, Johannes J. de Graaff, James S. Willi-
ford, and Max M. North. Virtual environments for treating the
fear of heights. IEEE Computer, 28(7):27–34, July 1995.

[HKRA95] John Hughes, Val King, Tom Rodden, and Hans Andersen. The
role of ethnography in interactive systems design. interactions,
2(2):57–65, April 1995.

[Hug90] J. Hughes. The philosophy of social research. Longman, London,
second edition edition, 1990.

[Jan83] Ann Janda, editor. CHI’83 Human Factors in Computing Systems,
Boston, 1983. ACM, ACM Press.

[Joh92] Peter Johnson. Human computer interaction: psychology, task anal-
ysis and software engineering. McGraw-Hill, 1992.

[Joh00] Jeff Johnson. Textual bloopers. interactions, 7(5):28–48, Septem-
ber + October 2000.

[Jon92] John Chris Jones. Design methods. Van nostrand reinhold, 1992.

[KA92] B. Kirwan and L.K. Ainsworth, editors. A guide to task analysis.
Taylor & Francis, Londen, 1992.

[Kap92] Victor Kaptelinin. Human computer interaction in context: The
activity theory perspective. In East-West International Confer-
ence on Human-Computer Interaction: Proceedings of the EWHCI’92,
pages 7–13, 1992.

[KB91] John Karat and John L. Bennett. Working within the design pro-
cess. In John M. Carroll, editor, Designing Interaction: Psychology
at the Human-Computer Interface, pages 269–285. Cambridge Uni-
versity Press, 1991.

[KC90] J. Kirakowski and M. Corbett. Effective methodology for the study of
HCI, volume 5 of Human factors in information technology. North-
Holland, 1990.

233

BIBLIOGRAPHY

[Kim90] Scott Kim. Interdisciplinary cooperation. In Brenda Laurel,
editor, The art of human-computer interface design, pages 31–44.
Addison-Wesley, 1990.

[Kir95] Alex Kirlik. Requirements for psychological models to support
design: Toward ecological task analysis. In J.M. Flach, P. Han-
cock, J. Caird, and K.J. Vincente, editors, Global Perspectives on the
Ecology of Human-Machine Systems, volume 1 of Resources for Eco-
logical Psychology, chapter 5, pages 68–120. Lawrence Erlbaum
Associates, Hillsdale, NJ, 1995.

[KMM95] Irvin R. Katz, Robert Mack, and Linn Marks, editors. CHI’95
Human Factors in Computing Systems, Denver, 1995. ACM, ACM
Press.

[Kol] Raghu Kolli. An analysis of interaction design representations:
Case studies of three interactive media projects. Unpublished.

[Kyn95] Morton Kyng. Making representations work. Communications of
the ACM, 38(9):46–55, September 1995.

[Lan88] Thomas K. Landauer. Research methods in human-computer
interaction. In Martin Helander, editor, Handbook of Human-
Computer Interaction, pages 905–928. North-Holland, New York,
NY, 1988.

[Lan95] Thomas K. Landauer. The trouble with computers. The MIT Press,
1995.

[Lau93] Brenda Laurel. Computers as theatre. Addison-Wesley, 1993.

[Law90] Bryan Lawson. How designers think: the design process demystified.
Butterworth Architecture, 1990.

[LFNZ92] J.K. Liker, M. Fleischer, M. Nagamachi, and M.S. Zonnevylle.
Designers and their machines: Cad use and support in the usa
and japan. Communications of the ACM, 35(2):77–95, February
1992.

[LVC89] M.A. Linton, J.M. Vlissides, and P.R. Calder. Composing user
interfaces with interviews. IEEE Computer, 22(2):8–22, 1989.

234

BIBLIOGRAPHY

[MAR96a] MARC Analysis Research Corporation. MARC/Designer Tutorial,
1996. http://www.marc.com/demo/ .

[Mar96b] P. Marti. Task-centred design: turning task modelling into de-
sign. SIGCHI Bulletin, 28(3):65–70, July 1996.

[MBYM91] Allan MacLean, Victoria Bellotti, Richard Young, and Thomas
Moran. Reaching through analogy: a design rationale perspec-
tive on roles of analogy. In Proceedings of ACM CHI’91 Conference
on Human Factors in Computing Systems, pages 167–172, 1991.

[McG95] Joseph E. McGrath. Methodology matters: doing research in the
behavioral and social sciences. In Reading in human-computer in-
teraction: towards the year 2000, pages 152–169. Unknown, second
edition, 1995.

[MG95] Andrew F. Monk and Nigel Gilbert, editors. Perspectives on HCI
- Diverse approaches. Computers and people. Academic Press,
1995.

[MGD+90] Brad A. Myers, Dario Giuse, Roger B. Dannenberg, Brad Van-
der Zanden, David Kosbie, Ed Pervin, Andrew Mickish, and
Philippe Marchal. Garnet: Comprehensive support for graph-
ical, highly-interactive user interfaces. IEEE Computer, 23(11),
November 1990.

[Mit87] C.M. Mitchell. Gt-msocc: a research domain for modeling
human-computer interaction and aiding decision making in su-
pervisory control systems. IEEE Transactions on Systems, Man,
and Cybernetics, SMC-17:553–570, 1987.

[Mor81] T.P. Moran. The command language grammar: a representation
for the user interface of interactive computer systems. Interna-
tional Journal of Man-Machine Studies, pages 3–51, 1981.

[MPH+97] Thomas P. Moran, Leysia Palen, Steve Harrison, Patrick Chiu,
Don Kimber, Scott Minneman, William van Melle, and Polle
Zellweger. “i’ll get that off the audio”: A case study of salvaging
multimedia meeting records. In Steven Pemberton, editor, Pro-
ceedings of the CHI 97 conference on Human Factors in Computing
Systems, Human Factors in Computing Systems, pages 202–209.
ACM SIGCHI, ACM Press, 1997.

235

BIBLIOGRAPHY

[MPWJ92] P. Markopoulos, J. Pycock, S. Wilson, and P. Johnson. Adept:
a task based design environment. In Proceedings of the 25th
Hawaiïinternational conference on systems sciences, pages 587–596.
IEEE Computer Society, 1992.

[MS95] Kevin Mullet and Darrell Sano. Designing visual interfaces: com-
munication oriented techniques. Prentice-Hall, 1995.

[MSN94] Roberto Moriyon, Pedro Szekely, and Robert Neches. Automatic
generation of help from interface design models. In Proceedings
of SIGCHI ’94, Human Factors in Computing Systems, pages
225–231, Boston, 1994. ACM.

[MYBM91] Allan MacLean, Richard M. Young, Victoria M. E. Bellotti, and
Thomas P. Moran. Questions, options, and criteria: Elements of
design space analysis. Human-Computer Interaction, 6(3,4):201–
250, 1991.

[Mye96] Brad A. Myers. A brief history of human-computer technology.
Technical Report CMU-HCII-96-103, Carnegie Mellon Univer-
sity, 1996.

[Nar96a] Bonnie A. Nardi, editor. Context and Consiousness: Activity The-
ory and Human-Computer Interaction. The MIT press, Cambridge,
MA, 1996.

[Nar96b] Bonnie A. Nardi. Studying context: a comparison of activity the-
ory, situated action models, and distributed cognition. In Con-
text and Consiousness: Activity Theory and Human-Computer Inter-
action, pages 69–102. The MIT Press, 1996.

[ND86] Donald. A. Norman and Stephen W. Draper, editors. User cen-
tered system design. Lawrence erlbaum associates, 1986.

[Neu95] Peter G. Neuman. Computer-related risks. Addison-Wesley, 1995.

[NF] Jakob Nielsen and Jan Maurits Faber. Parallel user interface de-
sign. Submitted to IEEE Computing.

[Nie93] Jakob Nielsen. Usability Engineering. Academic Press, 1993.

[NL95] William M. Newman and Michael G. Lamming. Interactive sys-
tem design. Addison-Wesley, 1995.

236

BIBLIOGRAPHY

[Nor88] Donald A. Norman. The psychology of everyday things. Basic
books, inc., 1988.

[Nor93] Donald A. Norman. Things that make us smart. Addison-Wesley,
1993.

[Oka75] Hideyuki Oka. How to wrap five more eggs. Weatherhill, 1975.

[Ols92] D.R. Olson. User Interface Management Systems. Morgan Kauf-
man, San Mateo, Ca., 1992.

[Ope91] Open Software Foundation. OSF/Motif Style Guide, revision 1.1
edition, 1991.

[PBACMF88] Mark D. Phillips, Howard S. Bashinski, Harry L. Ammerman,
and Jr. Claude M. Fligg. A task analytic approach to dia-
logue design. In Martin Helander, editor, Handbook of Human-
Computer Interaction, chapter 38, pages 835–857. North-Holland,
New York, NY, 1988.

[PC86] David Lorge Parnas and Paul C. Clements. A rational design
process: how and why to fake it. IEEE Transactions on software
engineering, SE-12(2), February 1986.

[Pen90] Roger Penrose. The emperor’s new mind: concerning computers,
minds, and the laws of physics. Vintage, Londen, 1990.

[Pet85] Henry Petroski. To engineer is human. St. Martin’s Press, New
York, 1985.

[Pet94] Henry Petroski. Design Paradigms: Case Histories of Error and
Judgement in Engineering. Cambridge University Press, 1994.

[PG86] S.J. Payne and T.E. Green. Task-action grammars: a model of
the mental representation of task languages. Human-Computer
Interaction, pages 98–133, 1986.

[Pri99] Primavera corporate website, 1999. http://www.
primavera.com/ .

[PRS84] R.R. Panko and Jr. R.H. Sprague. Implementing office systems
requires a new dp look. Data Management, 22(11), November
1984.

237

BIBLIOGRAPHY

[PRS+94] Jenny Preece, Yvonne Rogers, Helen Sharp, David Benyon, Si-
mon Holland, and Tom Carey. Human-Computer Interaction.
Addison-Wesley, 1994. Written for the Open University.

[Rae91] Arne Raeithel. Activity theory as a foundation for design. In
C. Floyd, H. Züllighoven, R. Budde, and R. Keil-Slawik, editors,
Software development and reality construction, chapter 8.4, pages
391–415. Springer-Verlag, 1991.

[Rag97] Dave Raggett. HTML 3.2 Reference Specification. World Wide
Web Consortium, 1997. http://www.w3c.org/pub/WWW/
TR/REC-html32.html .

[RE91] N.F.M. Roozenburg and J. Eekels. Produktontwerpen, structuur en
methoden. Lemma B.V., 1991. (In Dutch).

[Rei89] R. Reichman. Integrated interfaces based on a theory of context and
goal tracking, chapter 15, pages 209–227. Number 4 in Human
factors in information technology. North-Holland, 1989.

[Rhe95a] John Rheinfrank. A conversation with don norman. interactions,
2(2):47–55, April 1995.

[Rhe95b] John Rheinfrank. A conversation with john seely brown. inter-
actions, 2(1):47–55, January 1995.

[Ris] Risks forum. Online. todo: more info needed.

[RMK87] Mary Beth Rosson, Susanne Maass, and Wendy A. Kellog. De-
signing for designers: an analysis of design practice in the real
world. In John M. Caroll and Peter P. Tanner, editors, CHI + GI
1987 conference proceedings, pages 137–142. SIGCHI, ACM, 1987.

[RN96] Byron Reeves and Clifford Nass. The Media Equation: How People
Treat Computers, Television, an Media Like Real People and Places.
Cambridge University Press, Cambridge, 1996.

[RZ95] Dick Riehle and Heinz Züllighoven. A pattern language for
tool construction and integration based on the tools&materials
metaphor. In James O. Coplien and Douglas C. Schmidt, ed-
itors, PLoP-94, Pattern Languages of Program Design, chapter 2.
Addison-Wesley, 1995.

238

BIBLIOGRAPHY

[Sac95] Patricia Sachs. Transforming work: collaboration, learning and
design. Communications of the ACM, 38(9):36–44, September
1995.

[Sea96] Andrew Sears. Hci education: some progress and some new
questions. SIGCHI Bulletin, 28(4), 1996.

[SF90] P. Sukaviriya and James D. Foley. Coupling a ui framework with
automatic generation of context-sensitive animated help. In Pro-
ceedings of the ACM SIGGRAPH symposium on User Interface Soft-
ware and Technology. ACM SIGGRAPH, oct 1990.

[SG90] Franz Schiele and Thomas Green. Hci formalisms and cognitive
psychology: the case of task-action grammar. In M. Harrison
and H. Thimbleby, editors, Formal methods in human-computer
interaction, chapter 2, pages 9–62. Cambridge university press,
1990.

[SLN93] Pedro Szekely, Ping Luo, and Robert Neches. Beyond interface
builders: Model-based interface tools. In Proceedings of InterCHI
’93, Human Factors in Computing Systems, pages 383–390, Am-
sterdam, 1993. ACM.

[Sol82] H.G. Sol. Simulation in information systems development. PhD the-
sis, University of Groningen, 1982.

[Sol87a] H.G. Sol. Decision Support Systems: Theory and Applications, chap-
ter Paradoxes around DSS, pages 3–18. Springer-Verlag, Berlin,
1987.

[Sol87b] H.G. Sol. Informatiesystemen. Delft University of Technology
course material, 1987. In Dutch.

[SPS97] SPSS. SPSS for Windows Manual, 8.0.0 edition, 1997.

[SRAD97] Michael Scaife, Yvonne Rogers, Frances Aldrich, and Matt
Davies. Designing for or designing with? informant design for
interactive learning environments. In Steven Pemberton, editor,
Proceedings of the CHI 97 conference on Human Factors in Comput-
ing Systems, Human Factors in Computing Systems, pages 343–
350. ACM SIGCHI, ACM Press, 1997.

239

BIBLIOGRAPHY

[SS92] Paul Seaton and Tom Stewart. Evolving task oriented systems.
In CHI’92 Conference Proceedings, pages 463–469. ACM SIGCHI,
ACM, 1992.

[Sta99] Inc. Statsoft. Electronic Statistics Textbook. Statsoft, Tulsa,
OK, USA, 1999. http://www.statsoft.com/textbook/
stathome.html .

[Suc87] Lucy A. Suchman. Plans and situated actions. Cambridge Univer-
sity Press, 1987.

[Sun89] Sun microsystems, Inc., Mountain View. OPENLOOK graphical
user interface functional specification, 1989.

[Tay93] James R. Taylor. Rethinking the theory of organizational communi-
cation. Ablex, Norwood, New Jersey, 1993.

[TCKO00] Stephanie Teasley, Lisa Covi, M.S. Krishnan, and Judith Olson.
How does radical collocation help a team succeed? In CSCW
2000 Conference Proceedings. ACM Press, 2000.

[tH88] L.A. ten Horn. Wenken voor vrije interviewers. Collegedictaat,
Faculteit der Wijsbegeerte en Technische Maatschappijweten-
schappen, Delft University of Technology, 1988. In Dutch.

[tH93] Arthur H.M. ter Hofstede. Information modelling in data intensive
domains. PhD thesis, Katholieke Universiteit Nijmegen, 1993.

[Tha01] John Thackara. The design challenge of pervasive computing.
interactions, 8(3):46–51, May + June 2001.

[Thi90] Harold Thimbleby. User Interface Design. Frontier series. ACM
Press, 1990.

[Tic85] Walter F. Tichy. Rcs — a system for version control. Software —
Practice & Experience, 15(7):637–654, July 1985.

[Tim99] Time line solutions corporate website, 1999. http://www.
tlsolutions.com .

[TM91] Linda Tetzlaff and Robert L. Mack. Discussion: perspectives on
methodology in HCI research and practice. In John M. Carroll,

240

BIBLIOGRAPHY

editor, Designing interaction: psychology of Human-Computer In-
teraction, chapter 6, pages 286–314. Cambridge University Press,
1991.

[TNO91] TNO Building and Construction Research. Introduction and Lin-
eair Static Analysis: User Environment and Manuals, 1991. DIANA
Course Notes.

[TNO94] Tno corporate website, 1994. http://www.tno.nl/ .

[TNO00] Tno corporate website, 2000. http://www.tno.nl/ .

[Tog92] Bruce Tognazzini. Tog on Interface. Addison-Wesley, 1992.

[vACM95] J.W. van Aalst, T.T. Carey, and D.L. McKerlie. Design space
analysis as ’traning wheels’ in a framework for learning user in-
terface design. In CHI’95 Conference Proceedings, pages 154–161.
ACM SIGCHI, ACM Press, 1995.

[vdM95a] C.A.P.G. van der Mast. Developing educational software: integrat-
ing disciplines and media. PhD thesis, Delft University of Technol-
ogy, 1995.

[vdM95b] Charles van der Mast. Professional development of multime-
dia courseware. In Machine-Mediated Learning, pages 269–292.
Lawrence Erlbaum Associates, Inc., 1995.

[vdMV92] Charles van der Mast and Johan Versendaal. Separation of
user interface and application with the delft direct manipula-
tion manager (d2m2). In Proceedings of IFAC Man-Machine Sym-
posium, 1992.

[vM94] Jeroen W. van Meel. The dynamics of business engineering. PhD
thesis, Delft University of Technology, 1994.

[VSG91] Axel Viereck, Egbert Schlungbaum, and Peter Gorny. Structured
design of user-interfaces and knowledge-based design. In H.-J.
Bullinger, editor, Human aspects in computing, Advances in Hu-
man Factors/Ergonomics. Elsevier, 1991.

[WCS96] Larry Wall, Tom Christiansen, and Randal I. Schwartz. Program-
ming Perl. O’Reilly & Associates, 2nd edition, 1996.

241

BIBLIOGRAPHY

[Weg97] Peter Wegner. Why interacton is more powerful than algo-
rithms. Communications of the ACM, 40(5):80–91, May 1997.

[WHK90] Dennis Wixon, Karen Holtzblatt, and Stephen Knox. Contextual
design: an emerging view of system design. In Proceedings of
ACM CHI’90 Conference on Human Factors in Computing Systems,
Transcending perspectives, pages 329–336, 1990.

[Wij91] Gerard M. Wijers. Modelling support in information systems devel-
opment. PhD thesis, Delft University of Technology, 1991.

[Win96] Terry Winograd, editor. Bringing design to software. Addison-
Wesley, 1996.

[WJ95] Stephanie Wilson and Peter Johnson. Empowering users in
a task-based approach to design. In Gary M. Olson and Sue
Schuon, editors, Symposium on Designing Interactive Systems: Pro-
cesses, Practices, Methods & Techniques, pages 25–31. ACM Press,
1995. DIS ’95 Conference Proceedings.

[WJK+93] S. Wilson, P. Johnson, C. Kelly, J. Cunningham, and
P. Markopoulos. Beyond hacking: a model based approach to
user interface design. In People and computers VIII, proceedings of
the HCI’93 conference. Cambridge university press, 1993.

[Won93] Yin Yin Wong. Layer tool: Support for progressive design. In
Proceedings of ACM INTERCHI’93 Conference on Human Factors in
Computing Systems – Adjunct Proceedings, pages 127–128, 1993.

[WZ96] Larry E. Wood and Ron Zeno. Transforming user-centered anal-
ysis into concrete design. SIGCHI Bulletin, 28(4):35–38, October
1996.

[Yin89] R.K. Yin. Case study research: design and methods, volume 2 of Ap-
plied social research methods. SAGE publications, revised edition
edition, 1989.

[You84] L.F. Young. A corporate strategy for decision support systems.
Journal of Information Systems Management, 1(1), 1984.

242

Summary

Starting the desing of a complex interactive system is almost magical, espe-
cially when the work these systems need to describe can not be described eas-
ily. WONDER, a design tool described in this thesis, aims to support this early
part of the design process. Work that can not be described easily is also called
ill-structured work; the lack of structure is precisely what makes it hard to de-
scribe. Examples of this type of work are planning of activities on a shipyard
and making complex computations to optimize structural designs.

To focus the research three research questions are formulated. The first
question asks which design activities are needed during the early part of the
design process for interactive systems which need to support ill-structured
work. What needs to be done? What are the right steps? Which activities
are important, and which are not?

The second question looks for a way to describe the results of the design
activities without using actual user interface components. The idea behind this
question is that at this stage in the design process it is too early to make the
user interface design explicit. Instead, the structure and the overall integrity
of the design should focused on. User interface elements such as windows
and menus can be defined at a later stage. This question asks what kind of
representation is suitable for supporting the activities from the first question.

The third question is posed to ensure that the activities from the first ques-
tion and the representation from the second question form a whole that is actu-
ally usable and workable. A design tool only makes sense when it can be used

243

BIBLIOGRAPHY

during the design process.
These questions are built on a foundation: the belief that interactive systems

should be designed as a whole, and that the leading perspective during design
should be that of its users. This paradigm influences the research questions.

The research has been carried out according to an inductive-hypothetic
strategy. In this strategy four main activities are carried out. First, a descrip-
tion of a real world situation is made. Often this is done based on some kind
of initial theory. Second, lessons learned from describing this real world situa-
tion are abstracted and generalized. In particular, the perceived problems are
made clear. This leads to step three, where a theory is developed based on the
generalized observations. Finally, in step four, this theory is put into practice,
and the results are evaluated. This evaluation can again be input for the first
step of the process.

Thus, as a first step, a case study has been carried out. Basic theory about
the design of interactive systems was used. This basic theory was taken from
a small number of textbooks widely used to teach interaction design. The case
study itself was the design of an interactive system for finite element analysis,
called DIANA. DIANA as a system already existed, but this version only had a
command line based interface and was not interactive.

The main conclusion from this case study was that the HCI textbooks did
not offer much concrete support for the early part of the design process. Useful
activities were interviews with users and task analysis. The interviews with
users provided a clear image of the work context. The task analysis provided
structure, but dealing with the ill-structured parts of the work proved to be
hard. Two types of representations were used. Textual representations turned
out to be hard to communicate because so much was open for interpretation.
Graphical representations caused the discussion to shift to the specifics of the
graphics instead of more high-level issues.

Armed with the experience from the DIANA case in general and the conclu-
sions drawn from it in particular, a literature study has been carried out as the
second activity of the research strategy. This study focused on support for anal-
ysis and early design activities, and on the nature of multi-disciplinary teams.
A number of issues were not resolved by this study. No suitable design tools
were found which would answer the research questions. In particular, they are
often too rigid or too flexible; finding a useful balance seems to be hard. Con-
text was deemed very important by a number of sources, but specifics were
hard to come by. Not much information could be uncovered about the support
for ill-structured work. In addition to these open issues a number of recom-
mendations and suggestions have been formulated.

244

BIBLIOGRAPHY

The third activity in the research strategy is to formulate a theory. This
resulted in a new design tool called WONDER. WONDER stands for workspace
oriented design representation. WONDER consists of a number of representations
which change over time and a number of activities which describe how to work
with the representations. As the design progresses, the representations become
more and more structured. The key representation of WONDER is that of a work-
space. A workspace is part of the interactive system where a particular goal can
be accomplished, e.g. optimizing the floor plan of a shipyard. Workspaces
can contain other workspaces or refer to them, thus building a loose hierarchy
of goals. This hierarchy needs to confirm to the hierarchy of goals uncovered
during the analysis carried out earlier, essentially mapping the work to be sup-
ported to these workspaces. Each workspace also refers to materials. These ma-
terials exist outside of the workspaces, thus forming the connection between
workspaces. In the context of interactive systems these materials are really the
data to be worked on, e.g. the activities in the plan of the shipyard planner.

Support for ill-structured work is accomplished by not trying to describe it
in details. Instead a workspace collects all elements needed to carry out the ill-
structured work. This includes all needed materials and tools to make changes
or inspect these materials. The user can then use these tools and materials to
solve the problems presented by the work.

The fourth activity in the research strategy is to put the theory of WONDER
into practice and evaluate it. The SHIPSHAPE case, designing a planning sys-
tem for a shipyard, provided a challenging environment to test WONDER in.
Before starting the case a number of assumptions were formulated, each ad-
dressing a particular aspect of WONDER, e.g. that text is a good medium for a
model during the early design phase.

The SHIPSHAPE case was tested in two ways. Action research was used to
get an in depth feel for using WONDER, and a prototype implementation based
on the WONDER design was evaluated with shipyard planners. Results from
both of these activities were used to verify the assumptions.

Upon evaluation almost all the assumptions turned out to be true. This
indicates that WONDER does indeed live up to expectations. Only one as-
sumption was false: some design information was kept outside of WONDER
representations, even though it was assumed that WONDER could accommo-
date all design artifacts at this early stage of design. Two assumptions were
undecided. One questioned whether the representations contained the right
ingredients. While the workspace and material representations worked well, the
initially planned action was hardly used during design. In hindsight this repre-
sentation required to much detail to be useful at this stage in the design process.

245

BIBLIOGRAPHY

Another assumption on the roles in the design team was undecided because
each design team member served several roles, making it hard to separate each
one out.

Does WONDER also provide an answer for the research questions? The fact
that it exists provides an answer to the first two questions. The activities which
are part of WONDER describe the initial design activities. The representations,
and in particular the combination of workspaces and materials provides a way
to describe ill-structured work explicitly without using user interface compo-
nents. WONDER also provides a usable and workable solution, as is asserted by
some of the assumptions and by testimony of the design team.

There is something more important than WONDER or the fact that it answers
the research questions positively: the main principle emerging from the theory.
This main principle is finding the ever changing balance between structure
and freedom. In WONDER itself this is witnessed in the changing balance from
freedom towards structure in the use of the representations. In the results of
WONDER this is shown by trying to find the balance in offering just the right
materials and tools in a workspace. This principle can be applied more broadly
than WONDER itself.

246

Samenvatting

Het begin van het ontwerpen van een complex interactief systeem is bijna
magie, vooral wanneer het werk dat dit systeem moet beschrijven niet goed
te beschrijven is. WONDER, een ontwerpgereedschap dat beschreven is in dit
proefschrift, heeft als doel het ondersteunen van het begin van het ontwerppro-
ces. Werk dat niet goed beschreven kan worden wordt ook wel slecht gestruc-
tureerd genoemd; het gebrek aan structuur is precies wat het moeilijk maakt
het te beschrijven. Voorbeelden van dit type werk zijn het plannen van ac-
tiviteiten op een scheepswerf en het maken van complexe berekeningen om
ontwerpen van fysieke structuren te optimaliseren.

Om het onderzoek focus te geven zijn drie onderzoeksvragen opgesteld.
De eerste vraagt welke ontwerpactiviteiten nodig zijn tijdens het eerste deel
van het ontwerpproces voor interactieve systemen die slecht gestructureerd
werk moeten ondersteunen. Wat moet er gedaan worden? Wat zijn de juiste
stappen? Welke activiteiten zijn belangrijk, en welke niet?

De tweede vraag zoekt een manier om de resultaten van de ontwerpactiviteiten
te beschrijven zonder concrete elementen van de gebruiksinterface te gebruiken.
Het idee achter deze vraag is dat het in deze fase van het ontwerpen te vroeg
is om de gebruiksinterface al expliciet te maken. In plaats daarvan is focus
nodig op de structuur en de integriteit van het ontwerp. Elementen van de
gebruiksinterface zoals windows en menus kunnen later gedefinieerd worden.
Deze vraag zoekt een representatie die de activiteiten van de eerste vraag goed
kan ondersteunen.

247

BIBLIOGRAPHY

De derde vraag wordt gesteld om te zorgen dat de activiteiten van de eerste
vraag en de representatie van de tweede vraag een geheel vormen dat bruik-
baar en werkbaar is. Een ontwerpgereedschap heeft alleen zit als het ook ge-
bruikt kan worden tijdens het ontwerpproces.

Deze vragen bouwen voort op een fundament: het geloof dat interactieve
systemen moeten worden geimplementeerd als een geheel, en dat het leidende
perspectief tijdens het ontwerpen dat van de gebruikers moet zijn. Dit paradigma
beinvloed de onderzoeksvragen.

Het onderzoek is uitgevoerd volgens een inductief-hypothetische strategie.
In deze strategie worden vier hoofdactiviteiten uitgevoerd. Als eerste wordt
een beschrijving gemaakt van een bestaande situatie. Vaak is deze beschrijving
gebaseerd op een eerste aanzet tot een theorie. Als tweede stap worden de
lessen die geleerd zijn tijdens het bestuderen van de bestaande situatie meer
algemeen bekeken. Met name de waargenomen problemen worden duidelijk
gemaakt. Dit leidt tot stap drie waarbij een theorie ontwikkeld wordt op basis
van de algemeen gemaakte observaties. Ten slotte wordt in stap vier de theory
in de praktijk beproefd en geevalueerd. Deze evaluatie kan weer dienen als
bron voor de eerste stap van het proces.

Zodoende is als eerste stap een case bekeken. Standaard theorie over het
ontwerpen van interactieve systemen is hiervoor gebruikt. Deze standaard
theorie is gebaseerd op een klein aantal boeken die veel gebruikt worden om
het ontwerpen van interactieve systemen te leren. De case zelf betrof het on-
twerpen van een interactief systeem, DIANA, voor het maken van eindige ele-
menten methode berekeningen. DIANA bestond al, maar alleen met een niet-
interactieve command-gestuurde interface.

De belangrijkste conclusie die uit deze case getrokken kan worden is dat
de HCI boeken niet veel concrete ondersteuning bieden voor het begin van het
ontwerpproces. Waardevolle activiteiten waren het interviewen van gebruik-
ers en taak analyse. De interviews met gebruikers gaven een duidelijk beeld
van het werk en de omgeving waarin dat gebeurt. Taak analyse zorgde voor
structuur, maar werkte niet goed bij de slecht gestructureerde onderdelen van
het werk. Twee typen representaties zijn gebruikt. Representaties gebaseerd
op tekst bleken moeilijk communiceerbaar omdat zo veel nog open was voor
interpretatie. Bij grafische representaties dwaalde de discussie snel naar de
specifiek grafische elementen in plaats van de issues op hoger niveau.

Gewapend met de ervaring van de DIANA case in het algemeen, en de con-
clusies daarvan in het bijzonder, is als tweede activiteit van de onderzoeksstrate-
gie een literatuurstudie uitgevoerd. Deze studie richtte zich op de ondersteun-
ing voor analyse en ontwerp-activiteiten, en op multi-disciplinaire teams. Een

248

BIBLIOGRAPHY

aantal zaken werden door de literatuurstudie niet opgehelderd. Zo werd er
geen bruikbaar ontwerpgereedschap gevonden dat aan de onderzoeksvragen
beantwoord. Ze waren in het algemeen te rigide of te flexibel; de juist balans
is niet eenvoudig gevonden. De werkomgeving werd door een aantal bronnen
als belangrijk bestempeld, maar dit werd niet meer specifiek gemaakt. Ook
kon er weinig informatie gevonden worden over slecht gestructureerd werk.
Naast deze zaken werden een aantal aanbevelingen en suggesties gedaan.

De derde activiteit van de onderzoeksstrategie is het formuleren van een
theorie. Dit heeft geresulteerd in een nieuw ontwerpgereedschap genaamd
WONDER. WONDER is een afkorting van workspace oriented design representa-
tion. WONDER bevat een aantal representaties die gedurende de tijd veranderen
en een aantal activiteiten die beschrijven hoe met de representaties gewerkt
moet worden. Naarmate het ontwerp zich ontwikkelt worden de represen-
taties steeds meer gestructureerd. De centrale representatie van WONDER is die
van de workspace. Dit is een onderdeel van het interactieve systeem waarin een
bepaald doel bereikt kan worden, bijvoorbeeld het optimaliseren van het vloer-
plan van een scheepswerf. Workspaces kunnen andere workspaces omvatten
of er naar verwijzen. Op deze manier wordt een losse hierarchie van doelen
opgebouwd. Deze hierarchie moet aansluiten bij de doelen zoals die tijdens
de analyse fase gevonden zijn. Zodoende vormt de hierarchie de blauwdruk
van het werk wat ondersteund moet worden. Elke workspace refereert ook
naar materials. Deze bestaan los van de workspaces en vormen op die manier
de verbinding tussen de workspaces. In de context van een interactief sys-
teem zijn deze materials de data waarmee gewerkt worden, bijvoorbeeld de
activiteiten in het plan van de planner op een scheepswerf.

Ondersteuning voor slecht gestructureerd werk wordt bereikt door het niet
in detail te willen beschrijven. In plaats daarvan bevat een workspace alle el-
ementen die nodig zijn om het slecht gestructureerde werk te beschrijven: alle
materialen en gereedschappen waarmee deze materialen bekeken of aangepast
kunnen worden. De gebruiker kan deze materialen en gereedschappen dan
zelf inzetten om de problemen van het werk op te lossen.

De vierde activiteit in de onderzoeksstrategie is het in de praktijk brengen
van de theorie van WONDER. De SHIPSHAPE case, het ontwerpen van een plan-
ning systeem voor een scheepswerf, is een uitdagende omgeving om WON-
DER in te testen. Voor de start van de case zijn een aantal veronderstellingen
opgesteld die elk een specifiek aspect van WONDER toetsbaar maken, bijvoor-
beeld het feit dat tekst een goed medium is om te gebruiken voor representaties
tijdens de eerste ontwerpactiviteiten.

De SHIPSHAPE case is op twee manieren getest. Met behulp van action

249

BIBLIOGRAPHY

research is duidelijk geworden hoe het is om WONDER in de praktijk te ge-
bruiken, en met behulp van een prototype op basis van het WONDER ontwerp
is geevalueerd met planners van scheepswerven. De resultaten van beide ac-
tiviteiten zijn gebruikt om de veronderstellingen te verifieren.

Na de evaluatie blijken vrijwel alle veronderstellingen waar. Dit geeft aan
de WONDER inderdaad aan de verwachtingen voldoet. Slechts één veronder-
stelling was onwaar: niet alle ontwerpinformatie was vastgelegd met WONDER
representaties, ook al was het de veronderstelling dat het gehele ontwerp bin-
nen WONDER zou passen in deze fase van het ontwerpproces. Twee veronder-
stelling konden niet worden getoetst. Een ervan ging erover of de represen-
taties de juiste ingredienten bevatten. De workspace en material representaties
werken goed, maar de in eerste instantie geplande action is bijna niet gebruikt.
Achteraf bezien was deze representatie te gedetailleerd om bruikbaar te zijn
tijdens deze fase van het ontwerpproces. Een andere veronderstelling had be-
trekking op het ontwerpteam. Deze kon niet worden getoetst omdat elk team-
lid meerdere rollen had, die moeilijk los te zien waren van elkaar.

Beantwoord WONDER nu ook de onderzoeksvragen? Het feit dat WONDER
bestaat geeft al een antwoord op de eerste twee vragen. De activiteiten die on-
derdeel zijn van WONDER beschrijven de eerste ontwerpactiviteiten. De repre-
sentaties en in het bijzonder de combinatie van workspaces en materials levert
een manier om slecht gestructureerd werk zo goed mogelijk te beschrijven zon-
der dat teruggevallen moet worden op user interface elementen. WONDER is
ook een bruikbare en werkbare oplossing, zoals aangetoond wordt door enkele
van de veronderstellingen en door de ervaringen van het ontwerpteam.

Eén ding is belangrijker dan WONDER of het feit dat WONDER een positief
antwoord levert op de onderzoeksvragen: het principe dat voortkomt uit de
theorie. Dit principe is het zoeken naar de altijd veranderende balans tussen
structuur en vrijheid. In WONDER zelf is dit te vinden als de balans die veran-
dert van vrijheid naar structuur bij het gebruik van de representaties. In de
resultaten van WONDER is het terug te vinden als de balans in het juiste aan-
bod van materials en tools in een workspace. Dit principe kan breder toegepast
worden dan alleen in WONDER.

250

Curriculum Vitae

Hans de Graaff was born on July 18th, 1968 in ’s-Gravenzande, The Nether-
lands. In 1986 he graduated from high school, the Zandevelt College in ’s-
Gravenzande, concluding his basic education at pre-university level. The same
year he began to study computer science at Delft University of Technology in
Delft, The Netherlands. As part of this study he visited the Georgia Institute
of Technology in 1991. There, he worked on his thesis in the Graphics, Visual-
ization, and Usability Center for nine months. After returning to The Nether-
lands, he finished his thesis on “Context-sensitive help as an integral part of a
use interface design environment”. On October 1st, 1992 he started working
at Delft University of Technology as a Ph.D. researcher. During the course of
his research he has assisted a number of final year students with their master’s
projects. While at the university he has helped to set up and teach courses on
the design of interactive systems. Since 1997 he works at KPN Research, where
he conducts research into information and communication technology. Cur-
rently he investigates the use and need of high-bandwidth mobile technology
such as i-mode and UMTS from the perspective of the end user.

251

